Math, asked by jayadeep9153, 1 year ago

6. If[a] = 13,[b]= 5 and a.b = 60, then find la xbl.
How​

Answers

Answered by MaheswariS
30

\textbf{Formula used:}

\text{For any two vectors $\overrightarrow{a}$ and $\overrightarrow{b}$,}

\bf\,|\overrightarrow{a}{\times}\overrightarrow{b}|^2+(\overrightarrow{a}.\overrightarrow{b})^2=|\overrightarrow{a}|^2\,|\overrightarrow{b}|^2

\textbf{Given:}

|\overrightarrow{a}|=13

|\overrightarrow{b}|=5

\overrightarrow{a}.\overrightarrow{b}=60

\text{Now,}

|\overrightarrow{a}{\times}\overrightarrow{b}|^2+(\overrightarrow{a}.\overrightarrow{b})^2=|\overrightarrow{a}|^2\,|\overrightarrow{b}|^2

|\overrightarrow{a}{\times}\overrightarrow{b}|^2+(60)^2=(13)^2\,(5)^2

|\overrightarrow{a}{\times}\overrightarrow{b}|^2+(60)^2=(65)^2

|\overrightarrow{a}{\times}\overrightarrow{b}|^2=(65)^2-(60)^2

|\overrightarrow{a}{\times}\overrightarrow{b}|^2=(65+60)(65-60)

|\overrightarrow{a}{\times}\overrightarrow{b}|^2=(125)(5)

|\overrightarrow{a}{\times}\overrightarrow{b}|^2=625

\implies|\overrightarrow{a}{\times}\overrightarrow{b}|=\sqrt{625}

\implies\bf|\overrightarrow{a}{\times}\overrightarrow{b}|=25

\therefore\textbf{The value of $|\overrightarrow{a}{\times}\overrightarrow{b}|$ is 25}

Answered by mahek77777
11

GIVEN :–

 \\ \bf \implies | \overrightarrow{a}| = 3 \: , \:| \overrightarrow{b}| =4\: , \: \overrightarrow{a}.\overrightarrow{b} = 9\\

TO FIND :–

• Value of  \bf \overrightarrow{a} \times \overrightarrow{b} =?

SOLUTION :–

 \\ \bf \implies\overrightarrow{a}.\overrightarrow{b} = 9\\

 \\ \bf \implies | \overrightarrow{a}| | \overrightarrow{b}| \cos( \theta) = 9\\

 \\ \bf \implies (3)(4)\cos( \theta) = 9\\

 \\ \bf \implies \cos( \theta) = \dfrac{9}{12}\\

 \\ \bf \implies \cos(\theta) = \dfrac{3}{4}\\

• We should write this as –

 \\ \bf \implies \sqrt{1 -  { \sin}^{2}(\theta)}  = \dfrac{3}{4}\\

• Square on both side –

 \\ \bf \implies 1 -  { \sin}^{2}(\theta)= \dfrac{9}{16}\\

 \\ \bf \implies  { \sin}^{2}(\theta)= 1 - \dfrac{9}{16}\\

 \\ \bf \implies  { \sin}^{2}(\theta)= \dfrac{16 - 9}{16}\\

 \\ \bf \implies  { \sin}^{2}(\theta)= \dfrac{7}{16}\\

 \\ \large \implies{ \boxed{ \bf\sin(\theta)= \dfrac{ \sqrt{7}}{4}}}\\

• Now let's find –

 \\ \implies \bf\overrightarrow{a} \times \overrightarrow{b} =| \overrightarrow{a}| | \overrightarrow{b}| \sin(\theta)\\

 \\ \implies \bf\overrightarrow{a} \times \overrightarrow{b} =(3)(4)\dfrac{ \sqrt{7}}{4}\\

 \\ \large \implies \red{ \boxed{\bf\overrightarrow{a} \times \overrightarrow{b} =3\sqrt{7}}}\\

Similar questions