6. If a + b + c = 15 and a2 + b2 + c2 = 83, find
the value of a3 + b3 + c3 - 3abc.
Answers
Answered by
0
Solution :
We know that
a³ + b³ + c³ - 3abc
= (a + b + c)[(a² + b² + c²) - (ab + bc + ca)]...(I)
Now,
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
15² = 83 + 2(ab + bc + ca)
142 = 2(ab + bc + ca)
ab+ bc + ca
= 142/2
= 71
Substituting the value of ab + bc + ca in (i),
we get
a³ + b³ + c³ - 3abc
= 15 (83 - 71)
= 15 x 12
= 180.
Similar questions