6.If alpha and beta are the zeroes of the polynomial 3x^(2)+5x+2 then the value of alpha+beta+alpha beta is
Answers
Question : If α and βare the zeroes of the polynomial 3x²+5x+2 then the value of α+βα.β is
Answer :
Explanation :
Given polynomial is 3x²+5x+2.
Let α , β are zeroes of the polynomial.
Let the general polynomial be ax²+bx+c.
Compare this with given polynomial , we get ,
a=3 , b=5 , c=2.
So , sum of roots of the polynomial is ,
Product of roots of the polynomial is ,
So , the value of is ,
------------------------------------------------------------
>>> Hope Helps You <<<
Answer:
Question : If α and βare the zeroes of the polynomial 3x²+5x+2 then the value of α+βα.β is
\star⋆ Answer :
\alpha +\beta +\alpha .\beta =-1α+β+α.β=−1
\star⋆ Explanation :
\star⋆ Given polynomial is 3x²+5x+2.
\star⋆ Let α , β are zeroes of the polynomial.
\star⋆ Let the general polynomial be ax²+bx+c.
\star⋆ Compare this with given polynomial , we get ,
\star⋆ a=3 , b=5 , c=2.
\bold{\star}⋆ So , sum of roots of the polynomial is ,
= > \alpha +\beta =\frac{-b}{a}=\frac{-5}{3}=>α+β=a−b=3−5
\bold{\star}⋆ Product of roots of the polynomial is ,
= > \alpha .\beta =\frac{c}{a}=\frac{2}{3}=>α.β=ac=32
\bold{\star}⋆ So , the value of \alpha +\beta +\alpha .\betaα+β+α.β is ,
\begin{gathered}= > \alpha +\beta +\alpha .\beta \\\\= > \frac{-5}{3}+\frac{2}{3}\\\\ = > \frac{-3}{3}\\\\ = > -1\end{gathered}=>α+β+α.β=>3−5+32=>3−3=>−1