6. If p(x) = x^3 + 3x^2 - 2x +4, then find the value of
p(2) + p(-2) - p(0).
[CBSE 2012
Answers
Answered by
1
Answer:
28
Step-by-step explanation:
p(x) = x^3 + 3x^2 - 2x + 4
p(2) = 2^3 + 3(2)^2 - 2(2) + 4
= 8 + 12 - 4 + 4
= 20
p(-2) = (-2)^3 + 3(-2)^2 - 2(-2) + 4
= - 8 + 12 + 4 + 4
= 12
p(0) = (0)^3 + 3(0)^2 - 2(0) + 4
= 0 + 0 - 0 + 4
= 4
Hence,
p(2) + p(-2) - p(0) = 20 + 12 - 4
= 28
Answered by
1
Answer
p(2) + p(-2) - p(0) = 28
Step By Step Explanation
p(2) + p(-2) - p(0)
= [2³ + 3(2)² - 2(2) + 4] + [(-2)³ + 3(-2)² - 2(-2) + 4] - [0³ + 3(0)² - 2(0) + 4]
= [8 + 3(4) - 4 + 4] + [-8 + 3(4) - (-4) + 4] - [0 + 3(0) - 0 + 4]
= [8 + 12 - 4 + 4] + [-8 + 12 + 4 + 4] - [0 + 0 - 0 + 4]
= [8 + 12] + [-8 + 12 + 8] - [4]
= 20 + 12 - 4
= 32 - 4
= 28
Similar questions