6. If tana = √2-1 then the sina cosa = ____
Answers
Step-by-step explanation:
Given:-
Tan A =√2-1
To find:-
Find the value of SinA CosA ?
Solution:-
Given that
Tan A =√2-1
On squaring both sides then
=>Tan^2 A = (√2-1)^2
We know that
(a-b)^2=a^2-2ab+b^2
=>Tan^2 A= (√2)^2 -2(√2)(1)+(1)^2
=>Tan^2 A=2-2√2+1
=>Tan^2A=3-2√2
We know that
Sec^2 A- Tan^2 A=1
=>Sec^2 A=1+Tan^2 A
=>1+Tan^2 A = 1+3-2√2
=>Sec^2 A = 4-2√2
=>Sec A =√[4-2√2]
=>1/Cos A = √(4-2√2)
=> Cos A =1/√(4-2√2)-----(1)
Now on squaring both sides
Cos^2 A = 1/(4-2√2)
We know that
Sin^2 A + Cos^2 A = 1
=> Sin^2 A = 1-Cos^2 A
=> 1- Cos^2 A = 1-[1/(4-2√2)]
=> Sin^2 A = [(4-2√2)-1]/(4-2√2)
=>Sin^2 A = (3-2√2)/(4-2√2)
=> Sin A =√(3-2√2)/√(4-2√2)-----(2)
Now Sin A. Cos A
From (1)&(2)
Sin A.Cos A
=>√(3-2√2)/√(4-2√2)× 1/√(4-2√2)
=> √(3-2√2)/√[(4-2√2)(4-2√2)]
=>√(3-2√2)/(4-2√2)
It can be written as
=>√(3-2√2)(4+2√2)/(4-2√2)(4+2√2)
=>√(√2-1)^2(4+2√2)/[(4)^2-(2√2)^2]
=>(√2-1)(4+2√2)/(16-8)
=>(4√2+4-4-2√2)/8
=>(4√2-2√2)/8
=>2√2/8
=>√2/4
SinA CosA = √2/4
Answer:-
The value of SinA CosA for the given problem is
√2/4
Used formulae:-
- (a-b)^2=a^2-2ab+b^2
- Sin^2 A + Cos^2 A = 1
- Sec^2 A- Tan^2 A=1