6. If the distance from P to the points (5,-4), (7,0)
are in the ratio 2:3, then the locus of P is
1) 5x2 + 5y2 - 12x - 86y + 17 = 0
2) 5x2 + 5y2 - 34x + 120y + 29 = 0
3) 5x2 + 5y2 - 5x + y + 14 = 0
4) 3x2 + 3y2 - 20x +38y + 87 = 0
n
Answers
Answered by
1
Answer:
B
5x
2
+5y
2
−34x+120y+29=0
Let P(x,y) be a point in locus.
The given points are A(5,−4) and B(7,6) and given that PA:PB=2:3. Therefore, we have:
PB
PA
=
3
2
⇒3PA=2PB
⇒9PA
2
=4PB
2
Now, applying the distance formula to the given points A(5,−4) and B(7,6):
9[(x−5)
2
+(y+4)
2
]=4[(x−7)
2
+(y−6)
2
]
⇒9[x
2
+5
2
−(2×x×5)+y
2
+4
2
+(2×y×4)]=4[x
2
+7
2
−(2×x×7)+y
2
+6
2
−(2×y×6)]
(∵(a+b)
2
=a
2
+b
2
+2ab,(a−b)
2
=a
2
+b
2
−2ab)
⇒9(x
2
+25−10x+y
2
+16+8y)=4(x
2
+49−14x+y
2
+36−12y)
⇒9(x
2
+y
2
−10x+8y+41)=4(x
2
+y
2
−14x−12y+85)
⇒9x
2
+9y
2
−90x+72y+369=4x
2
+4y
2
−56x−48y+340
⇒9x
2
−4x
2
+9y
2
−4y
2
−90x+56x+72y+48y+369−340=0
⇒5x
2
+5y
2
−34x+120y+29=0
Hence, the equation of locus of P is 5x
2
+5y
2
−34x+120y+29=0.
Similar questions