Math, asked by khandelwalasha258, 8 months ago

6. If x - y = 7 and r? + y2 = 67 find the value of xy.​

Answers

Answered by mysticd
5

 Given \: x - y = 7 \: --(1)

 and \; x^{2} + y^{2} = 67 \: --(2)

/* On squaring both sides of the equation (1) , we get */

 (x - y )^{2} = 7^{2}

 \implies x^{2} + y^{2} - 2xy = 49

 \implies 67 - 2xy = 49 \: [ From \: (2) ]

 \implies - 2xy = 49  - 67

 \implies - 2xy = -18

 \implies xy = \frac{ -18}{-2}

 \implies xy = 9

Therefore.,

 \red{ Value \: of \:  xy}\green { = 9}

•••♪

Answered by Anonymous
25

\red{\text{NOTE:- THE GIVEN QUESTION IS WRONG.}}

✯.CORRECT QUESTION,

  1. if x-y=7 and x²+y²=67 .then, find the value of xy.

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow x-y=7\:---equation\:1

\sf\dashrightarrow x^2+y^2= 67\:---equation\:2

✯.IDENTITY IN USE,

\large{\boxed{\bf{ \star\:\:(x^2-y^2)= x^2+y^2-2xy \:\: \star}}}

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow The\:value\:of\:xy

\large\underline\bold{SOLUTION,}

\sf\therefore\text{ taking equation one,}

\sf\dashrightarrow x-y=7

\sf\therefore\text{ squaring both sides.we get,}

\sf\dashrightarrow (x-y)^2=(7)^2

\sf\implies  x^2+y^2-2xy=49\:--- from\:the\:given\:identity.

\sf\implies 67-2xy= 49 \:----\boxed{from\:given\:equation\:2.}

\sf\implies -2xy=49-67

\sf\implies -2xy=-18

\sf\implies xy= \dfrac{-18}{-2}

\sf\implies xy= \dfrac{\cancel{-}\:18}{\cancel{-}\:2}

\sf\implies xy= \dfrac{18}{2}

\sf\implies xy= \cancel\dfrac{18}{2}

\sf\implies xy=9

\large{\boxed{\bf{ \star\:\: xy=9\:\: \star}}}

\large\underline\bold{THE\:VALUE\:OF\:xy\:IS\:9}

_________________

Similar questions