English, asked by Sravanandsunny, 8 hours ago

6) If x² + y² = 7xy then show that
2 log (x+y)= log x + log y + 2 log 3​

Answers

Answered by RashmiKhatun
1

Answer:

Sorry I can't understand your question.

Answered by Teluguwala
1

Given :-

 \:

\bf⟼ \: \: {x}^{2} + {y}^{2} \: = \: 7xy

 \:

To Prove :-

 \:

\bf⟼ \: \: 2 \: log \: (x + y) \: = \: log \: x \: + \: log \: y  \:  + \: 2 \: log \: 3

 \:

Solution :-

 \:

Given that,

 \:

\bf⟼ \: \: {x}^{2} + {y}^{2} \: = \: 7xy

 \:

Adding 2xy on both sides,

 \:

\bf⟼ \: \: {x}^{2} + {y}^{2}  + 2xy\: = \: 7 xy + 2xy

 \:

\bf⟼ \: \: ({x}  + {y})^{2} \: = \: 9xy \: \: \: \: \: \: \: \: \: \bigg( ∴( {a  +  b)}^{2} \: = \: {a}^{2} + {b}^{2}  +  2ab \bigg)

 \:

Adding log on both sides,

 \:

\bf⟼ \: \: log \: ({x}  +  {y})^{2} \: = \: log \: 9xy

 \:

\bf⟼ \: \: 2 \: log \: ({x}  + {y}) \: = \: log \: 9 \: + \: log \: x \: + \: log \: y

 \:

\bf⟼ \: \: 2 \: log \: ({x}  + {y}) \: = \: log \:  {3}^{2}  \: + \: log \: x \: + \: log \: y

 \:

\bf⟼ \: \: 2 \: log \: ({x}  + {y}) \: = \: 2 \: log \:  {3}  \: + \: log \: x \: + \: log \: y \:

 \:

Hence,

 \:

\bf  \purple{⟼}\red{ \: \: 2 \: log \: ({x}  + {y}) \: =   \: log \: x \: + \: log \: y \: +  \:  2 \: log \:  {3}}

 \:

Hence, proved !!!

 \:

Similar questions