6. In the figure, given below, ABC is an isosceles
triangle with BC = 8 cm and AB = AC = 5 cm.
Find :
(i) sin B
(ii) tan c
(iii) sin? B + cos2 B (iv) tan C - cot B
-
cm-----
Answers
Step-by-step explanation:
Here AB = BC = 5 cm and we draw an altitude AD as we know in isosceles triangle altitude also a median for not equal side of isosceles triangle . So
BD = CD = 4 cm ( Given BC = 8 cm )
Now from Pythagoras theorem In ∆ ABD we get
AB^2 = AD^2 + BD^2 ,Substitute values and get
5^2 = AD^2 + 4^2
AD^2 = 25 - 16
AD^2 = 9
AD = 3 cm
i ) We know : Sin =Opposite/Hypotenuse , So
Sin B = ADAB⇒Sin B = 35 ( Ans )
ii ) We know : tan θ = Opposite/Adjacent , So
tan C = ADCD⇒tan C = 34 ( Ans )
iii ) We know : Cos θ = Adjacent/Hypotenuse , So
Cos B= BDAB⇒Cos B= 45So, Sin2 B + Cos^2 B ⇒(35)^2 + (45)^2⇒925 + 1625⇒9 + 1625⇒2525⇒1 ( Ans )
iv ) We know : Cot θ = AdjacentOpposite , So
Cot B= BDAD⇒Cot B= 43So, tan C − Cot B ⇒34 − 43⇒9 − 1612⇒−712 ( Ans )
Hope this information will clear your doubts about Trigonometry.
HERE IS YOUR ANSWER
HOPE ITS HELPFUL!!!