Math, asked by tabindathakur, 8 months ago

6. In the given figure, PS is the median then angle QPS
a) 40°
c) 80°
b) 50°
d) 90°​

Attachments:

Answers

Answered by mysticd
35

 Given \:  in\: \triangle PQR , PQ = PR

 \angle {PQR} = 40\degree ,

PS \: is \:a \:median .

 \underline{\green{ Solution: }}

 in\: \triangle PQR , PQ = PR

 \angle {PQR} = \angle {PRQ} = 40\degree

\blue {( Angles \: opposite \:to \: equal \:sides}

 \blue{ equal. )}

 \angle {QPR} + \angle {PQR} + \angle {PRQ}= 180\degree

 \orange { ( Angle \:Sum \: Property )}

 \implies \angle {QPR} + 40\degree + 40 \:degree = 180\degree

 \implies \angle {QPR} + 80\degree  = 180\degree

 \implies \angle {QPR} = 180\degree  - 80\degree

 \implies \angle {QPR} = 100\degree

 ii) Now, in\: \triangle QPS \:and \:in\: \triangle RPS

 PQ = PR \: (given)

 \angle {PQR} = \angle {PRQ}

 QS = SR \: ( \because PS \:is \:a \: median )

 \therefore \triangle QPS \cong \triangle RPS

 \blue{ ( S .A.S \: congruence \:rule )}

 \angle {QPS} = \angle {RPS} \: ( C.P.CT )

 \implies \angle {QPS} = \frac{1}{2} \times \angle {QPR}

 = \frac{1}{2} \times 100

 = 50\degree

Therefore.,

 Option \: \pink { ( b ) } \:is \: correct.

•••♪

Answered by divyans0923v
22

Answer:

50 is your answer buddy

Similar questions