Math, asked by pharmj, 4 months ago

6. It is given that ZXYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ZZYP, find ZXYQ and reflex 2QYP.​

Answers

Answered by sanjaypnd80gmailcom
10

Answer:

It is given that line YQ bisects ∠PYZ.

Hence,

∠QYP = ∠ZYQ

PX is straight line

sum of angle in linear pair always equal to 180°

∠XYZ + ∠ZYQ + ∠QYP = 180°

Give that so plug the value we get ∠ XYZ = 64°

And ∠QYP = ∠ZYQ

∠ 64° + 2∠QYP = 180°

∠2∠QYP = 180° − 64° = 116°

Divide by 2 we get

∠QYP = 58°

Also, ∠ZYQ = ∠QYP = 58°

Using angle of reflection

∠QYP = 360° − 58° = 302°

∠XYQ = ∠XYZ + ∠ZYQ

= 64° + 58°

= 122°

Answered by BlessOFLove
3

{\tt{Question}}\: \purple☟

It is given that ZXYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ZZYP, find ZXYQ and reflex 2QYP.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\red&#9998{\tt{Answer}}\: \orange☟

⠀⠀	&#9679\purple{\bf{See \:the \:attachment}}\red{⇑}

	&#9679\orange{\bf{Question\: solved}}\: \green✔

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

All necessary formulas⤵️

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\purple{\boxed{\bf{Angle\:sum\: property}}}

Angle sum property of triangle states that the sum of interior angles of a triangle is 180°. Proof .Thus, the sum of the interior angles of a triangle is 180°.

\blue{\tt{Example:-}}

\red{\boxed{a+b+c=180°}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange{\boxed{\bf{Alternate\: interior\:angle}}}

Alternate interior angles are angles formed when two parallel or non-parallel lines are intersected by a transversal.Alternate interior angles are equal if the lines intersected by the transversal are parallel.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\red{\underbrace{complementary \:angle}}}}\red\star

The sum of 2 numbers=90°

example  a−b=90°

how to find "a" if a is not mentioned

\red{\underbrace{\bf{\orange{Given࿐}}}}

a= \: ?

b = 40

a+40=\:90°

a=90-40°

a=50°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\pink\star{\bf{\purple{\underbrace{supplementary\: angle}}}}\red\star

The sum of two numbers= \:180°

example a+b=180°

how to find "a" if a is not mentioned

Given

a= \:?

b =\: 40

a+40=180°

a=180-40°

a=140°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\green{\underbrace{Adjacent \:angle}}}}\red\star

If there is a common ray between {\bf&#x2220}a and {\bf&#x2220}b so it is a adjacent angle.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\blue{\underbrace{Vertical\: opposite\: angle }}}}\red\star

Vertical angles are pair angles formed when two lines intersect. Vertical angles are sometimes referred to as vertically opposite angles because the angles are opposite to each other.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\orange{\underbrace{lenear\: pair \:of\: angles}}}}\red\star

Here {\bf&#x2220}a+{\bf&#x2220}b=180°.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions