Math, asked by ayushDx, 4 months ago

6(p-1/p)=5,find the value of p^2+1/p^2=?​

Answers

Answered by AlluringNightingale
5

Answer :

97/36

Solution :

  • Given : 6(p - 1/p) = 5
  • To find : p² + 1/p² = ?

We have ;

=> 6(p - 1/p) = 5

=> p - 1/p = 5/6

Now ,

Squaring both the sides , we get ;

=> (p - 1/p)² = (5/6)²

=> p² + (1/p)² - 2•p•(1/p) = 25/36

=> p² + 1/p² - 2 = 25/36

=> p² + 1/p² = 25/36 + 2

=> p² + 1/p² = (25 + 72)/36

=> p² + 1/p² = 97/36

Hence ,

p² + 1/p² = 97/36

Answered by Anonymous
6

\large{\underline{\underline{\rm{\maltese\:\: \red{Question \: : }}}}}

If 6(p - \frac{1}{p}) = 5 , find the value of P^2 + \frac{1}{p^2} = ?

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large{\underline{\underline{\rm{\maltese\:\: \red{Answer \: : } }}}}

\boxed{\bold{p^2 + \frac{1}{p^2} = \frac{97}{36}}}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large{\underline{\underline{\rm{\maltese\:\: \red{Given\: : } }}}}

• 6(p - \frac{1}{p}) = 5

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large{\underline{\underline{\rm{\maltese\:\: \red{To\: Find \: : } }}}}

P^2 + \frac{1}{p^2} = ?

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large{\underline{\underline{\rm{\maltese\:\: \red{Concept \: Used: } }}}}

• (a + b)² = a² + b² + 2ab

• (a - b)² = a² + b² - 2ab

• (a + b) (a - b) = a² - b²

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large{\underline{\underline{\rm{\maltese\:\: \red{Solution \: : } }}}}

\\

6(p - \frac{1}{p}) = 5

 \implies p - \frac{1}{p} = \frac{5}{6}

\\

Now , Squaring both LHS as well as RHS. We get,

(p - \frac{1}{p})^2= (\frac{5}{6})^2

\implies p^2 + \frac{1}{p^2} - (2\:*\not{p}*\frac{1}{\not{p}}) = \frac{25}{36}

\implies p^2 + \frac{1}{p^2} - 2 = \frac{25}{36}

\implies p^2 + \frac{1}{p^2} = \frac{25}{36} + 2

 \implies p^2 + \frac{1}{p^2} = \frac{25 \: +\: (36*2)}{36}

\implies p^2 + \frac{1}{p^2} = \frac{25 \: + 72}{36}

\implies p^2 + \frac{1}{p^2} = \frac{97}{36}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large{\underline{\underline{\rm{\maltese\:\: \red{Answer \: : } }}}}

\boxed{\bold{p^2 + \frac{1}{p^2} = \frac{97}{36}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions