6. Prove (1 + tan A)2 + (1 - tan A)? = 2 sec A.
..................
plzzzzz Ans me Bro/sis
Answers
Answered by
1
Question:
prove that
[1 + tan(a)]² + [1 - tan(a)]² = 2 sec²(a)
Used formulas:
→ sec²θ - tan²θ = 1
sec²θ = 1 + tan²θ
tan²(a) = sec²(a) - 1
→ (a + b)² = a² + 2ab + b²
(a - b)² = a² - 2ab + b²
Answer:
Taking LHS
= 1 + 2tan(a) + tan²(a) + 1 - 2tan(a) + tan²(a)
= 2 + 2tan²(a)
= 2 + 2 [sec²(a) - 1]
= 2 + 2sec²(a) - 2
= 2sec²(a)
LHS = RHS
Hence proved
Concepts used:
⟩⟩ trigonometric identities
⟩⟩ trigonometric ratios
Similar questions