Math, asked by himanshu15016, 1 year ago

6 root x upon X + 4 - 2 root x + 4 upon X equals to 11

Attachments:

Answers

Answered by mysticd
25

 Given \: 6 \sqrt{\frac{x}{x+4}}  - 2 \sqrt{\frac{x+4}{x}} = 11

 \implies  6 \sqrt{\frac{x}{x+4}}  - 2 \sqrt{\frac{1}{\frac{x}{x+4}}} = 11

 Let \: a = \sqrt{\frac{x}{x+4} }\: --(1)

 \implies 6a - \frac{2}{a} = 11

 \implies 6a^{2} - 2 = 11a

 \implies 6a^{2} -11a-2 = 0

/* Splitting the middle term, we get */

 \implies 6a^{2} -12a+ 1a -2 = 0

 \implies 6a(a-2)+1(a-2) = 0

 \implies (a-2)(6a+1) = 0

 \implies a-2 = 0 \: Or \: 6a+1= 0

 \implies a = 2  \: Or \: a = \frac{-1}{6}

Case 1:

 a = 2

 \implies a^{2} = 4

 \implies \frac{x}{x+4} = 4

 \implies x = 4(x+4)

 \implies x = 4x+16

 \implies x - 4x = 16

 \implies  - 3x = 16

 \implies  x = \frac{-16}{3}

Case 2:

 a = \frac{-1}{6}

 \implies a^{2} = \frac{1}{36}

 \implies \frac{x}{x+4} = \frac{1}{36}

 \implies 36x = x+4

 \implies 36x - x = 4

 \implies 35x = 4

 \implies x = \frac{4 }{35}

Therefore.,

 \green { x = \frac{-16}{3} \: Or \: x = \frac{4 }{35}}

•••♪

Similar questions