6. Seven times a given two digit number is equal
to four times the number obtained by reversing the order of digits. the sum of digits of the number is 3 find the number
Answers
Answer:
Let numbers be x at onces place & y at tens place so,
10y+x is the digit.
Reversed digit =10x+y
According to the question ,
∴7(10y+x)=4(10x+y)
⇒x=2y⟶(i)
Now,
Given , x−y=3
from equation (i)2y=x substitute in above equation.
2y−y=3
y=3
So ,
x=2y=2⋅3=6
∴ Required original no: is =10y+x=10⋅3+6=36.
Answer:
The required two digit number is 12.
Step-by-step-explanation:
Let the digit at tens place of the two digit number be x.
And the digit at units place of the number be y.
∴ Two digit number = xy
i. e. Two digit number = 10x + y
Now,
The number obtained by reversing the digits = yx
∴ The number obtained by reversing the digits = 10y + x
From the first condition,
x + y = 3
⇒ x = 3 - y
⇒ x = - y + 3 - - - - - ( 1 )
From the second condition,
7 ( 10x + y ) = 4 ( 10y + x )
⇒ 70x + 7y = 40y + 4x
⇒ 70x - 4x = 40y - 7y
⇒ 66x = 33y
⇒ x = 33y ÷ 66
⇒ x = y / 2
⇒ - y + 3 = y / 2 - - - - [ From ( 1 ) ]
⇒ 2 ( - y + 3 ) = y
⇒ - 2y + 6 = y
⇒ 6 = y + 2y
⇒ 3y = 6
⇒ y = 6 ÷ 3
⇒ y = 2
By substituting y = 2 in equation ( 1 ), we get,
x = - y + 3 - - - - ( 1 )
⇒ x = - 2 + 3
⇒ x = 1
Now,
Two digit number = 10x + y
⇒ Two digit number = 10 * 1 + 2
⇒ Two digit number = 10 + 2
⇒ Two digit number = 12
∴ The required two digit number is 12.