6. Show that:
(i)
x^m+n × x^n+l × x^l+m
__________________=1
(x^m × x^n × x^l)^2
(ii) Square root of
x^p-q × x^q-r × x^r-p=1
Answers
Answered by
0
Answer:
Show that:
(i)
x^m+n × x^n+l × x^l+m
__________________=1
(x^m × x^n × x^l)^2
(ii) Square root of
x^p-q × x^q-r × x^r-p=1
Answered by
1
Answer:
Check the explanation.
Step-by-step explanation:
(i)
x^m+n × x^n+l × x^l+m
---------------------------------------
(x^m × x^n × x^l)^2
x^(m+n+n+l+l+m)
= ------------------------
(x^m+n+l)^2
x^2(m+n+l)
x^2(m+n+l)= --------------------- = 1 PROVED
x^2(m+n+l)= --------------------- = 1 PROVED x^2(m+n+l)
(ii) Square root of
x^p-q × x^q-r × x^r-p
=√{x^p-q × x^q-r × x^r-p}
= √{ x^(p - q + q - r + r - p)}
=√ {x^(0)}
=√(1)
= 1 Proved
Similar questions