Math, asked by jenasaudamini7, 9 months ago

6. Show that:
(i)
x^m+n × x^n+l × x^l+m
__________________=1
(x^m × x^n × x^l)^2

(ii) Square root of
x^p-q × x^q-r × x^r-p=1


Answers

Answered by parthgupta001965
0

Answer:

Show that:

(i)

x^m+n × x^n+l × x^l+m

__________________=1

(x^m × x^n × x^l)^2

(ii) Square root of

x^p-q × x^q-r × x^r-p=1

Answered by INDUS18
1

Answer:

Check the explanation.

Step-by-step explanation:

(i)

x^m+n × x^n+l × x^l+m

---------------------------------------

(x^m × x^n × x^l)^2

x^(m+n+n+l+l+m)

= ------------------------

(x^m+n+l)^2

x^2(m+n+l)

x^2(m+n+l)= --------------------- = 1 PROVED

x^2(m+n+l)= --------------------- = 1 PROVED x^2(m+n+l)

(ii) Square root of

x^p-q × x^q-r × x^r-p

=√{x^p-q × x^q-r × x^r-p}

= √{ x^(p - q + q - r + r - p)}

=√ {x^(0)}

=√(1)

= 1 Proved

Similar questions