Math, asked by lakshmijhansi304, 7 months ago

6. Show that the following points form a equilateral
triangle A(a,0), B(-a, 0), C(0, a (3)​

Answers

Answered by krishnamehra8660
0

Answer:

Vertices of Triangle ABC :-

A ( a , 0 )

B ( -a , 0 )

C ( 0 , a sqrt 3 )

To Show :-

These Points form an Equilateral Triangle

Formula Used :-

\begin{gathered}distance \: formula \: = \sqrt{(a _{2} - a_{1}} )^{2} + \sqrt{ ({b_{2} - b_{1}} )^{2} } \\\end{gathered}

distanceformula=

(a

2

−a

1

)

2

+

(b

2

−b

1

)

2

Solution :-

An Equilateral Triangle has all sides equal

so AB = BC = CA

AB :-

\begin{gathered}\sqrt{(a + a} )^{2} + \sqrt{ ( 0 + 0 )^{2} } \\ \\ \\ \sqrt{ ( 2a)^{2} } \\ \\ \\ 2a\end{gathered}

(a+a

)

2

+

(0+0)

2

(2a)

2

2a

BC :-

\begin{gathered}\sqrt{ ( - a - 0 )^{2} } + \sqrt{ ( a \sqrt{3} - 0 )^{2} } \\ \\ \\ \sqrt{ ( a ^{2} + 3a^{2} ) } \\ \\ \\ \sqrt{ ( 4a^{2} )} \\ \\ \\ 2a\end{gathered}

(−a−0)

2

+

(a

3

−0)

2

(a

2

+3a

2

)

(4a

2

)

2a

CA :-

\begin{gathered}\sqrt{ ( a - 0 )^{2} } + \sqrt{ ( a \sqrt{3} - 0 )^{2} } \\ \\ \\ \sqrt{ ( a ^{2} + 3a^{2} ) } \\ \\ \\ \sqrt{ ( 4a^{2} )} \\ \\ \\ 2a\end{gathered}

(a−0)

2

+

(a

3

−0)

2

(a

2

+3a

2

)

(4a

2

)

2a

As AB = BC = CA

It is an equilateral triangle

Similar questions