Math, asked by Nawal255, 3 months ago

6 Show that the relation “greater thar" on the set of natural numbers N, is transitive but is neither
reflexive nor symmetric.​

Answers

Answered by mathdude500
11

Basic Concept :-

Reflexive :-

  • Relation is reflexive, If (a, a) ∈ R for every a ∈ A.

Symmetric :-

  • Relation is symmetric, If (a, b) ∈ R, then (b, a) ∈ R.

Transitive :-

  • Relation is transitive, If (a, b) ∈ R & (b, c) ∈ R, then (a, c) ∈ R.

Let's solve the problem now!!

The given Relation R can be mathematically represent as

\rm :\longmapsto\:R \:  =  \{(a, b) : a > b \: where \: a, b \in \: N \}

Reflexive :-

\rm :\longmapsto\:Let \: a \in \: N

 \rm :\longmapsto\:We \:  know,  \: a \:  =  \: a

\rm :\implies\:a \:  \cancel >  \: a

\rm :\implies\:(a, a)  \: \cancel \in \: R

\bf\implies \:R \: is \: not \: reflexive.

Symmetric :-

\rm :\longmapsto\:Let \: a, b \:  \in \: N \: such \: that \: (a, b) \in \: R

\rm :\implies\:a > b

  \rm \: \cancel{\implies\:} \: b > a

\rm :\implies\:(a, b) \:  \cancel \in \: R

\bf\implies \:R \: is \: not \: symmetric.

Transitive :-

\rm :\longmapsto\:Let \: a,b,c \in \: N \: such \: that \: (a, b) \in \: R \: and \: (b, c) \in \: R

\rm :\longmapsto\:as \: (a, b) \in \: R \rm  \: \implies\:a > b -  - (1)

\rm :\longmapsto\:as \: (b, c) \in \: R \rm  \: \implies\:b > c -  - (2)

From equation (1) and equation (2), we concluded

\rm :\longmapsto\:a > c

\rm :\implies\:(a, c) \in \: R

\bf\implies \:R \: is \: transitive.

Similar questions