Math, asked by VETRIVJ, 1 year ago

6 skilled workers can dig a pond in 8 days while it takes 9 un skilled workers in 12 days to dig it how many days for 4 skilled and18 unskilled workers to do it?​

Answers

Answered by MSDFanAmkJr
2

Answer:

it takes the same time for the skilled and unskilled people to dig the same pond

Step-by-step explanation:

8 divided by 6 is 1.3333333333333333333333333333333333333333333333

12 divided by 9 is 1.333333333333333333333333333333333333333333333

so 1.3x4 = 5.2

1.3x18=23.4

Answered by wifilethbridge
8

Answer:

4 days

Step-by-step explanation:

6 skilled workers can dig a pond in 8 days

1 skilled workers can do a part of work in 8 days = \frac{1}{6}

1 skilled workers can do a part of work in 1 day = \frac{1}{6 \times 8}

                                                                             = \frac{1}{48}

4 skilled workers can do a part of work in 1 day = \frac{4}{48}

9 unskilled workers  can dig a pond in 12 days

1 unskilled workers can do a part of work in 12 days = \frac{1}{9}

1 unskilled workers can do a part of work in 1 day = \frac{1}{9 \times 12}

                                                                             = \frac{1}{108}

18 unskilled workers can do a part of work in 1 day = \frac{18}{108}

Together 4 skilled workers and 18 unskilled workers can do a part of work in 1 day = \frac{4}{48}+\frac{18}{108}

       = \frac{1}{4}

4 skilled workers and 18 unskilled workers can do \frac{1}{4} part of work in 1 day

So, 4 skilled workers and 18 unskilled workers can do whole work in days:

= \frac{1}{\frac{1}{4}}

= 4

So, 4 skilled and 18 unskilled workers to do it in 4 days

Similar questions