Math, asked by nandiniyadav2k6, 3 months ago

6. Solve the linear equation: 9x+5= 4(x-2)+8

7. Find the T.S.A of a brick whose dimensions are 10cm x 4cm x 3cm.

8. A coin is tossed once. Write all the possible outcomes.

9. In which quadrant the points (-9, 9) will lie.​

Answers

Answered by dhritibarot55
0

Answer:

Step-by-step explanation:

6) 9x +5 = 4(x-2)+8

    9x +5 = 4x -8 +8

    9x - 4x = -8 +8 -5

         5x   = -5

           x = -5/5

            x = -1

7)  total surface area of cuboid = 2(l*b +b*h + h*l)

                                                    = 2( 10*4 + 4*3 + 3*10)

                                                    =  2( 40 + 12 + 30)

                                                      = 2 ( 82)

                                                      =  164 cm square

                   

8)  2 possible outcomes

    1 head , 1 tail

9) second quadrant

Answered by OtakuSama
35

Question No. 1:-

Solve the linear equation: 9x+5= 4(x-2)+8

Required Answer:-

Given Equation:-

  \sf{ 9x+5= 4(x-2)+8}

 \\  \sf { \implies{9x + 5 = 4x - 8 + 8}}

\\  \sf { \implies{9x - 4x =  - 5}}

 \\  \sf { \implies{5x =  - 5}}

 \\  \sf{ \implies{x =  \frac{ - 5}{5} }}

 \\  \sf{ \orange{ \therefore{x =  -1}}}

Question No. 2 :-

Find the T.S.A of a brick whose dimensions are 10cm x 4cm x 3cm.

Required Answer:-

Given:-

Dimension of the brick = 10cm × 4cm × 3cm

Therefore:-

Length = 10cm

Breadth = 4cm

Height = 3cm

To Find :-

T. S. A. of the brick

♡ Solution :-

As we know that,

\boxed{ \sf{ \blue{tsa = 2(lb + bh + hl)}}}

Substituting the values :-

 \sf{ \bold{T.S.A.}= 2(10 \times 4 + 4 \times 3 + 3 \times 10)}

 \\  \sf{ \bold{T.S.A.} = 2(40 + 12 + 30)}

 \\  \sf{ \bold{T.S.A.} = 2 \times 82}

 \\  \sf{ \therefore{ \bold{T.S.A.} =  \orange{162}}}

Hence, T. S. A. of the brick is 162sq.cm

Question No. 3 :-

A coin is tossed once. Write all the possible outcomes.

Required Answer:-

The possible outcomes of a coin if it is tossed once are:-

  • Head
  • Tail.

Each of these outcomes is equally likely, since there is 1 'head' and 1 'tail' on the coin.

Question No. 4:-

In which quadrant the points (-9, 9) will lie.

Required Answer:-

The point (-9, 9) stands in 2nd quadrant. ( - , +)

N. B. See the attachment for more explanation.

Attachments:
Similar questions