Math, asked by Tejbhan2031, 9 months ago

6 tan 30°cot 60°+ 3 tan 60°cot 30°+ tan 20°cot 20° tan 45°

Answers

Answered by prathyushkrishnatheg
3

Answer:

answer is 13

Step-by-step explanation:

Answered by payalchatterje
0

Answer:

Required value of the given term is 12.

Step-by-step explanation:

Given,

6 tan 30°cot 60°+ 3 tan 60°cot 30°+ tan 20°cot 20° tan 45°

 = 6 \times  \frac{1}{ \sqrt{3} }  \times  \frac{1}{ \sqrt{3} }  + 3 \times  \sqrt{3}  \times  \sqrt{3}  + tan {20}^{o}  \times  \frac{1}{tan {20}^{o} }  \times 1

 = 6 \times  \frac{1}{ \sqrt{3} \times  \sqrt{3}  }  + 3 \times 3 + 1 \times 1 \\  = 6 \times  \frac{1}{3}  + 9 + 1 \\  = 2 + 9 + 1 \\  = 12

Here applied formula,

tan {30}^{o}  =  \frac{1}{ \sqrt{3} }  \\ tan {45}^{o}  = 1 \\ tan {60}^{o}  =  \sqrt{3}  \\ cot {30}^{o}  =  \sqrt{3}  \\ cot {60}^{o}  =  \frac{1}{ \sqrt{3} }  \\ cotx =  \frac{1}{tanx}

Some important Trigonometry formula,

sin(x)  =  \cos(\frac{\pi}{2}  - x)  \\  \tan(x)  =  \cot(\frac{\pi}{2}  - x)  \\  \sec(x)  =  \csc(\frac{\pi}{2}  - x)  \\ \cos(x)  =  \sin(\frac{\pi}{2}  - x)  \\ \cot(x)  =  \tan(\frac{\pi}{2}  - x)  \\ \csc(x)  =  \sec(\frac{\pi}{2}  - x)

know more about Trigonometry,

https://brainly.in/question/8632966

https://brainly.in/question/11371684

#SPJ5

Similar questions