Math, asked by Eshal980, 1 year ago

6 tan square theta -6 sec square theta =

Answers

Answered by mysticd
22

Answer :

-6

Explanation:

Here I am using A instead of theta.

**********************

We know the algebraic identity:

sec²A - tan²A = 1

**********************

Now ,

6tan²A - 6sec²A

= 6( tan²A - sec²A)

= -6(sec²A - tan²A)

= -6 × 1

= -6

••••

Answered by Anonymous
9
We have to find the value of :

6 { \tan }^{2} \alpha - 6 { \sec}^{2} \alpha

As we know that :

 { \sec }^{2} \alpha = 1 + { \tan}^{2} \alpha \\ \\ = > { \tan }^{2} \alpha - { \sec }^{2} \alpha = - 1.....(1)

So,

6 { \tan }^{2} \alpha - 6 { \sec }^{2} \alpha \\ \\ = &gt; 6( { \tan}^{2} \alpha - { \sec }^{2} \alpha ) \\ \\ = &gt; 6 \times ( - 1) \\ \\ = &gt; - 6 \: \: \: \: \: \: \: \: \: \: <br />[ \: From \: equation \: (1) \:]
Similar questions