Math, asked by laxmikushwaha77198, 8 months ago

6) The area of a circle is 817 cm^2 .Find the length of Arc subtending an angle of 150° at the center.Also find the arc of corresponding sector.​

Answers

Answered by hanshu1234
1

Step-by-step explanation:

3600 has area=81πcm2

3600 has area=81πcm23000 has area =36081π×300cm2

3600 has area=81πcm23000 has area =36081π×300cm2=3681π×30cm2

3600 has area=81πcm23000 has area =36081π×300cm2=3681π×30cm2=681π×5cm2

3600 has area=81πcm23000 has area =36081π×300cm2=3681π×30cm2=681π×5cm2=6405πcm2

3600 has area=81πcm23000 has area =36081π×300cm2=3681π×30cm2=681π×5cm2=6405πcm2=2135πcm2

3600 has area=81πcm23000 has area =36081π×300cm2=3681π×30cm2=681π×5cm2=6405πcm2=2135πcm22πr (circumference) has →81πcm2 area

3600 has area=81πcm23000 has area =36081π×300cm2=3681π×30cm2=681π×5cm2=6405πcm2=2135πcm22πr (circumference) has →81πcm2 areaor 81πcm2 area →2πr are length

3600 has area=81πcm23000 has area =36081π×300cm2=3681π×30cm2=681π×5cm2=6405πcm2=2135πcm22πr (circumference) has →81πcm2 areaor 81πcm2 area →2πr are length⇒ Length of arc =1622πr×135

3600 has area=81πcm23000 has area =36081π×300cm2=3681π×30cm2=681π×5cm2=6405πcm2=2135πcm22πr (circumference) has →81πcm2 areaor 81πcm2 area →2πr are length⇒ Length of arc =1622πr×135πr2=81cm2

3600 has area=81πcm23000 has area =36081π×300cm2=3681π×30cm2=681π×5cm2=6405πcm2=2135πcm22πr (circumference) has →81πcm2 areaor 81πcm2 area →2πr are length⇒ Length of arc =1622πr×135πr2=81cm2⇒r=π81

3600 has area=81πcm23000 has area =36081π×300cm2=3681π×30cm2=681π×5cm2=6405πcm2=2135πcm22πr (circumference) has →81πcm2 areaor 81πcm2 area →2πr are length⇒ Length of arc =1622πr×135πr2=81cm2⇒r=π81∴ Length of arc corresponding to 3000 angle =162270ππ81

Similar questions