6. The concept of sustainable development is subject to criticism. Why?
(a) It is a utopian idea not possible in practice.
(b) Any positive rate of exploitation of non-renewable resources will necessarily lead to exhaustion of resources.
(c) Sustainable development is impossible to achieve.
Answers
Answer:
The implications of sustainable development become more difficult to sort out with respect to non-renewable resources—fossil fuels, minerals, and so forth. On the surface, it is obviously impossible to use a non-renewable resource "sustainably"; each unit of a non-renewable resource used is one less unit from a finite pool.57 But it is not immediately clear whether and how non-renewable resources such as oil, gas, and minerals should be conserved. It is not even self-evident that running out of a resource necessarily impinges on the ability of future generations to meet their needs.
Many resource-intensive industries are finding that it is not only possible, but profitable, to reduce material usage and pollution, and they have embarked on ambitious programs to reduce material use and pollution without the prod of legal mandates.
For example, using whale oil in the nineteenth century as an input for energy or manufacturing was clearly unsustainable. And obviously it wasn' t sustained. The hunting of whales to near extinction may have threatened the biological diversity of the planet, but the depletion of whale oil as a resource did not impede succeeding generations from growing and meeting their needs, and, not coincidentally, protecting and restoring the whale population at the same time.
This points to the problem of having a static view of our resource consumption and production, and the paradoxical problem of having a sufficiently long time horizon. The paradox is that our technological and resource utilization mix is certain to continue changing as rapidly, if not more rapidly, than it has for the past century, yet the longer the time horizon we try to anticipate, the less certain we can be of the conditions and challenges facing our successors. Put more plainly, it is impossible for our generation to know what resources future generations will need, and in what proportions.
Chart 31 - Cubic Feet of Wood Used for Fuel
A resource planner in 1900 who worried about the resource needs of the year 2000 would have been taking care to secure supplies of kerosene and firewood for heating and lighting, copper for telegraph wires, rock salt for refrigeration, horses for transportation, and large amounts of land to grow feed stock for draft animals. Certainly this planner would not have known to secure large supplies of oil and gas, as they were only starting to come into major use and their supplies were abundant.
It is possible to conceive generally of technological advances in the next 75 years that will make today's resource concerns as obsolete as a concern for rock salt would have been 75 years ago. In arguing in favor of a "promethean environmentalism," Duke University Professor Martin Lewis points to the prospect of "molecular nanotechnology," i.e., programmable molecules, which would be a green technology that might even provide the means of species restoration (shades of Jurassic Park?).58
Such "out-there" ideas may seem as unthinkable today as trips to the moon 100 years ago, or the desktop personal computer 50 years ago, yet these precedents show how the unimaginable becomes the routine. And even well beneath these high-technology frontiers, it is possible to imagine such low-tech practices as mining old landfills for their raw materials, which might be thought of as retroactive recycling.59 These examples are intended to reintroduce the old economic principle of substitution to our thinking about sustainability.
In the classic Economics 101 sense of the term, new materials or methods are substituted when a resource becomes too scarce, and hence expensive. In the environmental arena it has a wider application: we can see a history of resource substitution that is both more efficient and cleaner. Some uses of non-renewable energy, especially oil and gas, are positively "green" technologies compared with the modes of energy use they replaced. For example, the development of the automobile, which is often portrayed as environmental public enemy number one, had several positive environmental tradeoffs.
plz mark this as brainliest answer and do plz follow me.