Math, asked by diya33636, 4 months ago


6. The diagonals cof
rhombus are 7.5cm and
12 cm. Find its area​

Answers

Answered by Rubellite
8

\Large{\underbrace{\sf{\red{Required\:Solution:}}}}

Given :

  • The diαgonαls of rhombus αre 7.5cm αnd 12cm.

To Find :

  • Areα of the rhombus

Procedure :

In this question, we αre given the diαgonαls of α rhombus αnd αsked to find the αreα. To do so, we'll simply substitute the vαlues in the formulαe αnd simplify.

So, Let's do it!

Knowledge Required :

\large\star{\boxed{\sf{\red{ Area_{(rhombus)} = \dfrac{1}{2} \times d_1 \times d_2}}}}

Step by step explαnαtion :

\implies{\sf{ \dfrac{1}{2} \times 7.5cm \times 12cm}}

\implies{\sf{ \dfrac{1}{\cancel{2}} \times 7.5cm \times \cancel{12cm}}}

\implies{\sf{ 7.5cm \times 12cm}}

\large\implies{\boxed{\sf{\red{ 45cm^{2}}}}}

Hence, the αreα of the rhombus is 45cm².

And we αre done! :D

__________________________

Answered by EliteZeal
129

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • 1st Diagonal of rhombus is 7.5 cm

  • 2nd Diagonal of rhombus is 12 cm

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Area of rhombus

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

We know that ,

 \:\:

 \underline{\bold{\texttt{Area of rhombus :}}}

 \:\:

 \sf \dfrac { 1 } { 2 } \times D1 \times D2 ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • D1 = 1st Diagonal

  • D2 = 2nd Diagonal

 \:\:

 \underline{\bold{\texttt{Area of given rhombus :}}}

 \:\:

  • D1 = 7.5

  • D2 = 12

 \:\:

Putting the values in ⓵

 \:\:

 \sf \dfrac { 1 } { 2 } \times D1 \times D2

 \:\:

 \sf \dfrac { 1 } { 2 } \times 7.5 \times 12

 \:\:

➜ 7.5 × 6

 \:\:

➨ 45 sq. cm.

 \:\:

  • Hence the area of rhombus is 45 sq. cm.

 \:\:

Additional information

 \:\:

Properties of rhombus

 \:\:

  • All sides of the rhombus are equal

  • The opposite sides of a rhombus are parallel

  • Opposite angles of a rhombus are equal

  • In a rhombus, diagonals bisect each other at right angles

  • Diagonals bisect the angles of a rhombus

  • The sum of two adjacent angles is equal to 180 degrees

  • The two diagonals of a rhombus form four right-angled triangles which are congruent to each other

Similar questions