Math, asked by devangmehta2682, 10 months ago


6)
The equation x² -(p+4)X + 2p + 5 = 0 has equal roots the values of p will be.
a) 1
c) ± 2
d) -2
b)2​

Answers

Answered by Anonymous
51

AnswEr :

The value of p could be ± 2

Given,

 \sf \:  {x}^{2}  - (p + 4)x + 2p + 5 = 0

The above equation has two equal roots

We have to find the value of P

On comparing with ax² + bx + c = 0,

  • a = 1
  • b = - (p + 4)
  • c = 2p + 5

If a quadratic equation has equal roots,it's discriminant is equal to zero,

D = 0

» b² - 4ac = 0

» [-(p+4)]² = 4(1)(2p + 5)

» (p² + 8p + 16) = 8p + 20

» p² = 4

» p = ± 2

Answered by fab13
34

Answer:

 {x}^{2}  -( p + 4)x + 2p + 5 = 0 \\  =  >  {x}^{2}  - px - 4x + 2p + 5 = 0 \\  =  >  {x}^{2}  - (4 + p) x+(2p+ 5) = 0 \\  =  > x =  \frac{ ( 4 + p)( +  - ) \sqrt{( 4 + p) {}^{2}  - 4 \times 1 \times (2p + 5)} }{2 \times 1}  \\  =  > x =  \frac{(4 + p)( +  - ) \sqrt{(16 + 8p +  {p}^{2}  )- 4(2p  + 5)} }{2}  \\  =  > x = \frac{(4 + p)( +  - ) \sqrt{16 + 8p +  {p }^{2} - 8p - 20 } }{2}  \\  \\  =  > x =   \frac{(4 + p)( +  - ) \sqrt{ {p }^{2} - 4 } }{2}  \\

x1 =  \frac{4 + p+  \sqrt{ {p}^{2}  - 4} }{2} \\ x2 =  \frac{4 + p -  \sqrt{ {p}^{2} - 4 } }{2}

the roots are equal

therefore,

x1 = x2 \\  =  >  \frac{4 + p +  \sqrt{ {p}^{2} - 4 } }{2}  =  \frac{4 + p -  \sqrt{ {p}^{2}  - 4} }{2}  \\  =  > 4 + p +  \sqrt{p {}^{2}  - 4}  = 4 + p -  \sqrt{p {}^{2}  - 4}  \\  =  >  \sqrt{ {p}^{2}  - 4}  =  -  \sqrt{ {p}^{2}  - 4}  \\  =  >  \sqrt{ {p}^{2} - 4 }  +  \sqrt{ {p}^{2}  - 4}  = 0 \\  =  > 2 \sqrt{ {p}^{2}  - 4 }  = 0 \\  =  >  \sqrt{ {p}^{2}  - 4}  = 0 \\  =  >  {p}^{2}  - 4 = 0 \\  =  >  {p}^{2}  = 4 \\  =  > p =  + 2 \:  \:  \:  \:  |  p = \:  \: - 2

so option B is correct (+-)2

Similar questions