Math, asked by mythrilaliger, 11 months ago


6. The first and the last terms of an AP are 17 and 350 respectively. If the common difference
is 9, how many terms are there and what is their sum?

Answers

Answered by Anonymous
6

Let a and d are first term and common

Difference for an AP.

Number of terms of AP = n

Last term = nth term = l = an

a = 17

d = 9

l = 350

a + ( n - 1 ) d = 350

17 + ( n - 1 ) 9 = 350

( n - 1 ) 9 = 350 - 17

( n - 1 ) 9 = 333

n - 1 = 333 ÷ 9

n - 1 = 37

n = 37 + 1

n = 38

Therefore ,

Number of terms in given AP = n = 38

Sum of n terms of AP = Sn

Sn = n ÷ 2 ( a + l )

Here n= 38

S38 = 38 ÷ 2 [ 17 + 350 ]

= 19 × 367

= 6973

Amannnscharlie

Answered by silentlover45
5

\large\underline\pink{Given:-}

  • First term of Ap = 17
  • Last term of Ap = 350
  • Common difference = 9

\large\underline\pink{To find:-}

  • Sum of all term of Ap ....?

\large\underline\pink{Solutions:-}

\: \: \: \: \: \therefore \: \:  {a_n} \: \: = \: \: {a} \: + \: {({n} \: - \: {1})} \: d

  • \: \: \: \: \: {a} \: \: = \: \: {17}
  • \: \: \: \: \: {d} \: \: = \: \: {9}
  • \: \: \: \: \: {n} \: \: = \: \: {?}
  • \: \: \: \: \: {a_n} \: \: = \: \: {350}

\: \: \: \: \:  We \: \: have

\: \: \: \: \: \therefore \: \: {a_n} \: \: = \: \: {a} \: + \: {({n} \: - \: {1})} \: d

\: \: \: \: \: \leadsto \: \: {350} \: \: = \: \: {17} \: + \: {({n} \: - \: {1})} \: {9}

\: \: \: \: \: \leadsto \: \: {350} \: \: = \: \: {17} \: + \: {({9n} \: - \: {9})}

\: \: \: \: \: \leadsto \: \: {350} \: - \: {17}  \: \: = \: \: {9n} \: - \: {9}

\: \: \: \: \: \leadsto \: \: {333}  \: \: = \: \: {9n} \: - \: {9}

\: \: \: \: \: \leadsto \: \: {333} \: + \: {9} \: \: = \: \: {9n}

\: \: \: \: \: \leadsto \: \: {347} \: \: = \: \: {9n}

\: \: \: \: \: \leadsto \: \: {n} \: \: = \: \: {347}{9}

\: \: \: \: \: \leadsto \: \: {n} \: \: = \: \: {38}

\: \: \: \: \: \: \: Now, \\ \: \:\therefore \: \: Sum \: \: of \: \: n \: \: term \: \: of \: \: Ap.

\: \: \: \: \: \: \: \therefore \: \: {S_n} \: \: \frac{n}{2} \: {({a} \: + \: {a_n})}

\: \: \: \: \: \: \: \leadsto \: \:  \frac{38}{2} \: {({17} \: + \: {350})}

\: \: \: \: \: \: \: \leadsto \: \:  {19} \: \times \: {367}

\: \: \: \: \: \: \: \leadsto \: \:  {6973}

\: \: \: \: \: \: \: \: \: {S_{38}} \: \: = \: \:  {6973}

\: \: \: \: \: \: \: Hence, \\ \: \:\therefore \: \: Sum \: \: of \: \: {38th} \: \: term \: \: of \: \: Ap \: \: is \: \: {6973}

__________________________________

Similar questions