Math, asked by mythrilaliger, 11 months ago


6. The first and the last terms of an AP are 17 and 350 respectively. If the common difference
is 9, how many terms are there and what is their sum?​

Answers

Answered by Omkar25072004
2

Answer:

Step-by-step explanation: Given: a=17 , l = 350 ,d =9

we can use formula sum=n/2(a+l) ⇒ =n/2(17+350) ⇒ sum= 367 (n/2)....... (i)           also , sum= n/2(2a+(n-1)d) ⇒ = n/2 (2×17+(n-1)9) ⇒ =n/2 (34 +9n-n) ⇒      sum= n/2(25+9n)...........(ii)                                                                                      from i & ii , 367 × n/2 = n/2 (25+9n) ⇒ 367 = 25 + 9n ⇒ n =38 putting value in (i) , sum= 367 × 38/2 = 6973

Answered by Anonymous
108

Sᴏʟᴜᴛɪᴏɴ :

  • Given A.P in which a = 17
  • Last term = l = 350
  • Common difference, d = 9

We know that,

an = a + (n - 1) d

⇒ 350 = 17 + (n - 1) 9

⇒ 350 = 17 + 9n - 9

⇒ 9n = 350 - 8

Sn = n/2[a + l]

⇒ S38 = 38/2[17 + 350]

⇒ S38 = 19 × 367

⇒ S38 = 6973

Hence,

  • n = 38
  • Sn = 6973
Similar questions