Math, asked by bhujelanusha94, 1 month ago

6. The fourth, seventh and tenth terms of a G.P. are l,m,n
respectively, then
a) In=m?
b) 12 =m² +n?
c) 12 =mn
d) n² =lm​

Answers

Answered by mathdude500
1

Correct Question :-

The fourth, seventh and tenth terms of a G.P. are l,m,n

respectively, then

  • a) In=m²

  • b) l² =m² + n²

  • c) l² =mn

  • d) n² =lm

\large\underline{\sf{Solution-}}

We know that,

↝ nᵗʰ term of an geometric sequence is,

 \underline{\boxed{ \bf \: a_n \:  =  \:  {ar}^{n - 1}}}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

Tʜᴜs,

↝ 4ᵗʰ term is,

\rm :\longmapsto\:a_4 \:   =  \: {ar}^{4 - 1}

\rm :\longmapsto\:a_4 \:   =  \: {ar}^{3}

➣ It is given that 4ᵗʰ term is l.

 \rm :\longmapsto\: \: \therefore \:  \:  {ar}^{3}  = l -  -  - (1)

Aɢᴀɪɴ,

↝ 7ᵗʰ term is,

\rm :\longmapsto\:a_7 \:   =  \: {ar}^{7 - 1}

\rm :\longmapsto\:a_7 \:   =  \: {ar}^{6}

➣ It is given that 7ᵗʰ term is m.

 \rm :\longmapsto\: \: \therefore \:  \:  {ar}^{6}  = m -  -  - (2)

Aɢᴀɪɴ,

↝ 10ᵗʰ term is,

\rm :\longmapsto\:a_{10}\:   =  \: {ar}^{10 - 1}

\rm :\longmapsto\:a_{10}\:   =  \: {ar}^{9}

➣ It is given that 10ᵗʰ term is n.

 \rm :\longmapsto\: \: \therefore \:  \:  {ar}^{9}  = n -  -  - (3)

Now,

↝ Consider,

\rm :\longmapsto\:l \times n

 \:  \:  \:  \:  =  \:  \rm  \:  \:  {ar}^{3}  \times  {ar}^{9}

 \:  \:  \:  \:  =  \:  \rm  \:  \:  {a}^{2}  {r}^{12}

 \:  \:  \:  \:  =  \:  \rm  \:  \:  {\bigg( {ar}^{6}  \bigg) }^{2}

 \:  \:  \:  \:  =  \:  \rm  \:  \:  {m}^{2}

\bf\implies \:ln =  {m}^{2}

\bf\implies \: \boxed{ \bf \: Option \: (a) \: is \: correct}

Additional Information :-

↝ Sum of n terms of an geometric sequence is,

 \underline{ \boxed{ \bf \: S_n = \dfrac{a( {r}^{n}  - 1)}{r - 1} \:  \: provided \: that \: r \ne \: 1}}

Wʜᴇʀᴇ,

  • Sₙ is the sum of first n terms.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

↝ Sum of infinite terms of an geometric sequence is

 \underline{ \boxed{ \bf \: S_{ \infty} = \dfrac{a}{1 - r} \:  \: provided \: that \:  |r| < 1 }}

Similar questions