Math, asked by kanchansingh5260, 1 year ago

6. The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord. Prove it.

Answers

Answered by priya14112003
10

hope it helps you

mark it as brainliest

Attachments:
Answered by Anonymous
55

━━━━━━━━━━━━━━━━━━━━

\sf\underbrace{Question: }

  • The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.??

\sf\underline\red{Given }

  • A Circle with centre at O.
  • AB is chord of circle & OX bisects AB i,e. AX = BX

\sf\underline\orange{To\:Prove:}

  • \sf{OX \:⊥\: AB}

\sf\underline\purple{Solution:}

In ∆AOX & ∆BOX

\\

  • ⟹\sf{OA \:= \:OB}

\\

  • ⟹\sf{OX\:=\:OX}

\\

  • ⟹\sf{AX\:=\:BX}

\\

  • ⟹\sf{∴△AOX\: ≈ \:△BOX}

\\

  • ⟹\sf{∠AXO\: ≈\: BXO\:(CPCT)...1}

\\

In line AB

Hence, \sf{∠AXO\:∠BXO\: From\: Linear\:Pair}

\\

  • ⟹\sf{∠AXO\:+\:∠BXO\:=\:180°}

\\

  • ⟹\sf{∠AXO\:+\:∠AXO\:=\:180°}

\\

  • ⟹\sf{2∠AXO\:=\:180°}

\\

  • ⟹\sf{∠AXO\:=}\sf\dfrac{180°}{2}

\\

  • ⟹\sf{∠AXO\:=\:90°}

\\

  • ⟹\sf{∴∠AXO\:=\:∠BXO\:90°}

\\

  • ⟹\sf{=\:OX \:⊥\: AB}

\bf\underline{Hence,\:proved}

━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions