Math, asked by rohitchahar311, 1 month ago

6. The polynomials ax² + 3x2 - 13 and 2x? -5x + a are divided by x + 2. If the remainder in ea case is the same, find the value of a : C: ban 2 22 is disided by 3-X​

Answers

Answered by natvarbaraiya77
0

Answer:

Topic :- This is your punishment for spamming in my question

Differentiation

To Differentiate :-

f(x)=\cot x \cdot \ln \sec xf(x)=cotx⋅lnsecx

Solution :-

f(x)=\cot x \cdot \ln \sec xf(x)=cotx⋅lnsecx

\dfrac{d(f(x))}{dx}=\dfrac{d(\cot x \cdot \ln \sec x)}{dx}

dx

d(f(x))

=

dx

d(cotx⋅lnsecx)

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot\dfrac{d(\cot x )}{dx}+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

dx

d(f(x))

=lnsecx⋅

dx

d(cotx)

+cotx⋅

dx

d(lnsecx)

\left(\because \dfrac{d(fg)}{dx}=g\cdot \dfrac{d(f)}{dx}+f\cdot\dfrac{d(g)}{dx} \right)(∵

dx

d(fg)

=g⋅

dx

d(f)

+f⋅

dx

d(g)

)

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot(-\csc^2x)+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

dx

d(f(x))

=lnsecx⋅(−csc

2

x)+cotx⋅

dx

d(lnsecx)

\left(\because \dfrac{d(\cot x)}{dx}=-\csc^2x \right)(∵

dx

d(cotx)

=−csc

2

x)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot\dfrac{d(\sec x )}{dx}

dx

d(f(x))

=−csc

2

x⋅lnsecx+cotx⋅

secx

1

dx

d(secx)

\left(\because \dfrac{d(\ln t)}{dx}=\dfrac{1}{t}\cdot\dfrac{dt}{dx} \right)(∵

dx

d(lnt)

=

t

1

dx

dt

)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot \sec x\cdot \tan x

dx

d(f(x))

=−csc

2

x⋅lnsecx+cotx⋅

secx

1

⋅secx⋅tanx

\left(\because \dfrac{d(\sec x)}{dx}=\sec x\cdot \tan x \right)(∵

dx

d(secx)

=secx⋅tanx)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+(\cot x\cdot\tan x)\cdot\left (\dfrac{1}{\cancel{\sec x}}\cdot \cancel{\sec x}\right)

dx

d(f(x))

=−csc

2

x⋅lnsecx+(cotx⋅tanx)⋅(

secx

1

secx

)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+1

dx

d(f(x))

=−csc

2

x⋅lnsecx+1

(\because \cot x \cdot \tan x = 1)(∵cotx⋅tanx=1)

Answer :-

\underline{\boxed{\dfrac{d(f(x))}{dx}=1-\csc^2x \cdot\ln \sec x}}

dx

d(f(x))

=1−csc

2

x⋅lnsecx

Note : csc x = cosec x

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

ANSWER

Correct Expression :-

\mathtt{\dfrac{x^3+12x}{6x^2+8}=\dfrac{y^3+27y}{9y^2+27}}

6x

2

+8

x

3

+12x

=

9y

2

+27

y

3

+27y

To Find :-

\mathtt{x:y\:\:by\:using\:Componendo\:and\:Dividendo.}x:ybyusingComponendoandDividendo.

Concept Used :-

\mathtt{If\:\dfrac{a}{b}=\dfrac{c}{d},then\:using\:Componendo\:and\:Dividendo}If

b

a

=

d

c

,thenusingComponendoandDividendo

\mathtt{\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}}

a−b

a+b

=

c−d

c+d

Solution :-

\mathtt{\dfrac{x^3+12x}{6x^2+8}=\dfrac{y^3+27y}{9y^2+27}}

6x

2

+8

x

3

+12x

=

9y

2

+27

y

3

+27y

Using Componendo and Dividendo,

\mathtt{\dfrac{x^3+12x+(6x^2+8)}{x^3+12x-(6x^2+8)}=\dfrac{y^3+27y+(9y^2+27)}{y^3+27y-(9y^2+27)}}

x

3

+12x−(6x

2

+8)

x

3

+12x+(6x

2

+8)

=

y

3

+27y−(9y

2

+27)

y

3

+27y+(9y

2

+27)

Opening brackets,

\mathtt{\dfrac{x^3+12x+6x^2+8}{x^3+12x-6x^2-8}=\dfrac{y^3+27y+9y^2+27}{y^3+27y-9y^2-27}}

x

3

+12x−6x

2

−8

x

3

+12x+6x

2

+8

=

y

3

+27y−9y

2

−27

y

3

+27y+9y

2

+27

Rewriting it,

\mathtt{\dfrac{x^3+3(2)^2(x)+3(2)(x^2)+2^3}{x^3+3(2^2)x-3(2)(x^2)-2^3}=\dfrac{y^3+3(3^2)(y)+3(3)(y^2)+3^3}{y^3+3(3^2)(y)-3(3)(y^2)-3^3}}

x

3

+3(2

2

)x−3(2)(x

2

)−2

3

x

3

+3(2)

2

(x)+3(2)(x

2

)+2

3

=

y

3

+3(3

2

)(y)−3(3)(y

2

)−3

3

y

3

+3(3

2

)(y)+3(3)(y

2

)+3

3

We know that,

\mathtt{(a+b)^3=a^3+3ab^2+3a^2b+b^3}(a+b)

3

=a

3

+3ab

2

+3a

2

b+b

3

\mathtt{(a-b)^3=a^3+3ab^2-3a^2b-b^3}(a−b)

3

=a

3

+3ab

2

−3a

2

b−b

3

Using Identities,

\mathtt{\dfrac{(x+2)^3}{(x-2)^3}=\dfrac{(y+3)^3}{(y-3)^3}}

(x−2)

3

(x+2)

3

=

(y−3)

3

(y+3)

3

\mathtt{\left(\dfrac{x+2}{x-2}\right)^3=\left(\dfrac{y+3}{y-3}\right)^3}(

x−2

x+2

)

3

=(

y−3

y+3

)

3

Taking Cube Root on both sides,

\mathtt{\sqrt[3]{\left(\dfrac{x+2}{x-2}\right)^3}=\sqrt[3]{\left(\dfrac{y+3}{y-3}\right)^3}}

3

(

x−2

x+2

)

3

=

3

(

y−3

y+3

)

3

\mathtt{\dfrac{x+2}{x-2}=\dfrac{y+3}{y-3}}

x−2

x+2

=

y−3

y+3

Using Componendo and Dividendo again,

\mathtt{\dfrac{x}{2}=\dfrac{y}{3}}

2

x

=

3

y

We can write it as,

\mathtt{\dfrac{x}{y}=\dfrac{2}{3}}

y

x

=

3

2

Answer :-

Hence, x : y is equivalent to 2 : 3.

\begin{gathered}\Huge{\textbf{\textsf{{\purple{Ans}}{\pink{wer}}{\color{pink}{:}}}}} \\ \end{gathered}

Similar questions