Math, asked by Anonymous, 5 months ago

6. The ratio of base & height of parallelogram are 2:1 and area of parallelogram is 1250 cm 2 . Then find the base & height of a parallelogram.




Anonymous: bye
dondavis429: ok
Anonymous: OK
dondavis429: in which time
Anonymous: anytime except afternoon
dondavis429: ok
Anonymous: ok byeeeeee
dondavis429: byeeeeee
dondavis429: hi
dondavis429: Hi

Answers

Answered by Anonymous
17

Question:-

The ratio of base & height of parallelogram are 2:1 and area of parallelogram is 1250 cm² . Then find the base & height of a parallelogram.

Answer:-

  • The base and height of parallelogram are 50 cm and 25 cm.

To find:-

  • Base and height of parallelogram

Solution:-

  • Ratio = 2:1
  • Area of parallelogram = 1250 cm²

Let,

  • Base of parallelogram = 2x
  • Height of parallelogram = x

As we know,

 \large{ \boxed{ \huge{ \mathfrak{area = b \times h}}}}

Where,

  • b = base of parallelogram
  • h = height of parallelogram

According to question,

 \large{ \rm:  \implies \:  \:  \:  \:  \:  \:  \:  \: 2x  \times x = 1250}

 \large{ \rm:  \implies \:  \:  \:  \:  \:  \:  \:  \: 2 {x}^{2}  = 1250}

 \large{ \rm:  \implies \:  \:  \:  \:  \:  \:  \:  \:  {x}^{2}  =  \frac{1250}{2} } \\

 \large{ \rm:  \implies \:  \:  \:  \:  \:  \:  \:  \:  {x}^{2}  = 625}

 \large{ \rm:  \implies \:  \:  \:  \:  \:  \:  \:  \: x =  \sqrt{625} }

 \large{ \rm:  \implies \:  \:  \:  \:  \:  \:  \:  \: x = 25}

  • The value of x is 25 cm

Now,

  • Base of parallelogram = 2x = 50 cm
  • Height of parallelogram = x = 25 cm

Hence,

The base and height of parallelogram are 50 cm and 25 cm.

Answered by Anonymous
9

\large\purple{\boxed{\sf{Answer}}}

Given,

Ratio = \normalsize\mathsf{2:1}

Area = \normalsize\mathsf{{1250cm}^{2}}

To find,

Base and Height of Parallelogram

Solution,

Let Base be "2x" and Height be "x"

So,

\normalsize\pink{\boxed{\sf{Area\: of\: parallelogram=Base×Height}}}

Therefore,

\normalsize\mathsf{{1250cm}^{2}}=\normalsize\mathsf{(2x) × (x)}

\mathsf{{1250cm}^{2}} = \mathsf{{2x}^{2}}

\mathsf{{x}^{2}}=\mathsf{ \frac{1250cm}{2} }

\mathsf{{x}^{2}}= \mathsf{625}

\mathsf{x} = \mathsf{ \sqrt{625} }

\large\orange{\boxed{\sf{x=25}}}

➡Base = 25cm

➡Height = 50cm

Hope it helps..

Keep smiling..☺

_______❤_______

Similar questions