Math, asked by shanuruiya2020, 9 months ago

6.
The roots of x3 + x2 - x - 1 = 0 are
a) (-1,-1,1)
b) (1, 1, - 1)
d) (1, 1, 1)
c) (- 1,-1,-1)
please give a right option with step​

Answers

Answered by pulakmath007
34

SOLUTION

TO CHOOSE THE CORRECT OPTION

 \sf{ The \: roots \: of \:  \:  {x}^{3 } +  {x}^{2} - x - 1 = 0 \:  \: are  \: }

a) (-1,-1 , 1 )

b) (1, 1, - 1)

d) (1, 1, 1 )

c) (- 1,-1,-1 )

EVALUATION

Here the given equation is

 \sf{  {x}^{3 } +  {x}^{2} - x - 1 = 0 \:   \: }

 \implies \sf{  {x}^{2 } (x + 1)-1( x +   1) = 0 \:   \: }

 \implies \sf{   ( {x}^{2}   - 1)( x +   1) = 0 \:   \: }

 \implies \sf{  (x + 1) ( x   - 1)( x +   1) = 0 \:   \: }

 \implies \sf{   {( x +   1)}^{2}(x - 1)  = 0 \:   \: }

 \sf{ implies \:  \:   {( x +   1)}^{2} = 0 \:  \: or \:  \: (x - 1)  = 0 \:   \: }

Now

 \sf{ {( x +   1)}^{2} = 0 \:  \: gives \:  \: x =  - 1 \:  , \: - 1 \:   \: }

Again

 \sf{ {( x  -  1)} = 0 \:  \: gives \:  \: x =  1 \:   \:   \: }

FINAL ANSWER

 \sf{ The \: roots \: of \:  \:  {x}^{3 } +  {x}^{2} - x - 1 = 0 \:  \: are  \: }

a) ( -1 , - 1 , 1 )

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If 2^(x+3) + 2^(x – 4) =129,

then find the value of x.

https://brainly.in/question/23183505

Similar questions