Math, asked by avanishsingh45678, 3 months ago

6. The total surface area of a right cone is 1,760 cmand the radius of its base is 14 cm. Find the
following for the cone.
(a) height

Answers

Answered by TheBrainliestUser
64

Answer:

Height of right circular cone = 21.9 cm

Step-by-step explanation:

Given that:

  • The total surface area of a right circular cone is 1,760 cm²
  • The radius of its base is 14 cm.

To Find:

  • The height of the right circular cone.

Formula used:

T.S.A = πr(r + l) sq. unit

Where,

  • T.S.A = Total surface area of right circular cone.
  • r = Radius of right circular cone.
  • l = Slant height of right circular cone.
  • π = 22/7

Finding the slant height of right circular cone:

→ 1760 = 22/7 × 14 × (14 + l)

→ 1760 = 44 × (14 + l)

→ 14 + l = 1760/44

→ 14 + l = 40

→ l = 40 - 14

→ l = 26

∴ Slant height = 26 cm

Finding the height of right circular cone:

By using pythagoras theorem,

→ (Slant height)² = (Radius)² + (Height)²

→ (Height)² = (Slant height)² - (Radius)²

→ (Height)² = (26)² - (14)² cm

→ (Height)² = 676 - 196 cm

→ (Height)² = 480 cm

→ Height = √480 cm

→ Height = 21.9 cm (approx.)

Answered by Anonymous
207

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━

{\large{\bold{\rm{\underline{Proper \: question}}}}}

The total surface area of a right cone is 1,760 cm and the radius of its base is 14 cm. Find the height for the cone.

{\large{\bold{\rm{\underline{Given \: that}}}}}

⟹ The total surface area of a right cone is 1,760 cm

{\sf{:\implies Height \: of \: a \: right \: cone \: = \: 14 \: cm}}

{\large{\bold{\rm{\underline{To \: find}}}}}

{\sf{:\implies Height \: of \: a \: right \: cone}}

{\large{\bold{\rm{\underline{Solution}}}}}

{\sf{:\implies Height \: of \: a \: right \: cone \: = \: 21.9 \: cm}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━

{\large{\bold{\rm{\underline{Using \; concept}}}}}

{\sf{:\implies Formula \: to \: find \: TSA \: of \: cone}}

{\sf{:\implies Pythagoras \: Theorm}}

{\large{\bold{\rm{\underline{Using \; formula}}}}}

{\sf{:\implies TSA \: of \: cone \: = \pi r(r+l)}}

{\sf{:\implies Height^{2} \: = Slant \: height^{2} \: - Radius^{2}}}

{\large{\bold{\rm{\underline{Where,}}}}}

{\sf{:\implies TSA \: denotes \: Total \: Surface \: Area}}

{\sf{:\implies \pi \: is \: pronounced \: as \: pi}}

{\sf{:\implies Value \: of \: \pi \: is \: 22/7 \: or \: 3.14}}

{\sf{:\implies r \: denotes \: radius}}

{\sf{:\implies l \: denotes \: slant \: height}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

~ By using the formula to find TSA of cone, let's find the slant height..!

{\sf{:\implies TSA \: = \pi r(r+l)}}

{\sf{:\implies 1760 \: = 3.14(14)(14+l)}}

{\sf{:\implies 1760 \: = 3.14 \times 14 \times (14+l)}}

{\sf{:\implies 1760 \: = 43.96 \times (14+l)}}

{\sf{:\implies 1760/43.96 \: = (14+l)}}

{\sf{:\implies 40 \: = (14+l)}}

{\sf{:\implies 40 \: = 14+l}}

{\sf{:\implies 40 - 14 \: = l}}

{\sf{:\implies 26 = \: l}}

{\sf{:\implies l \: = 26 \: cm}}

{\small{\boxed{\boxed{\bf{Slant \: height \: is \: 26 \: cm}}}}}

~ Now by using phythagoras theorm let's find the height of the cone..!

{\sf{:\implies Height^{2} \: = Slant \: height^{2} \: - Radius^{2}}}

{\sf{:\implies Height^{2} \: = 26^{2} - 14^{2}}}

{\sf{:\implies Height^{2} \: = 676 - 196}}

{\sf{:\implies Height^{2} \: = 480}}

{\sf{:\implies Height \: = \sqrt{480}}}

{\sf{:\implies Height \: = 21.9 \: cm}}

{\small{\boxed{\boxed{\bf{Height \: is \: 21.9 \: cm}}}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━

Similar questions