Math, asked by chetanhack198, 2 months ago


6. The value of p if x, 2x + p and 3x + 6 are
in A.P.

valu of p = ------------​

Answers

Answered by Cynefin
71

Required Answer:-

In an AP, the difference between any two consecutive terms is constant. Hence, it is known as constant difference (d).

  • That means, the difference between the first and second term = difference between the second and third term.

  • Or we can consider the opposite. The difference will remain constant throughout.

Hence:-

➛ 2nd - 1st = 3rd - 2nd

➛ 2x + p - x = 3x + 6 - (2x + p)

➛ x + p = 3x + 6 - 2x - p

➛ x + p = x - p + 6

➛ x + p - x + p - 6 = 0

➛ 2p - 6 = 0

➛ 2p = 6

p = 3(Ans)

Answered by BrainlyRish
77

Given : x , 2x + p and 3x + 6 are in A.P [ Airthmetic Progression ] .

Exigency To Find : The value of p .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Given that ,

\qquad \dag\:\:\bigg\lgroup \sf{ x \:, \:2x\: + \:p \:and \:3x\: + \:6\: are\: in \:A.P\:  [\ Airthmetic\: Progression \ ]\: . }\bigg\rgroup \\\\

⠀⠀⠀⠀Here ,

⠀⠀⠀▪︎⠀ \sf 1^{st} \:Term\: =\: \bf \: x \:\\

⠀⠀⠀▪︎⠀ \sf 2^{nd} \:Term\: =\: \bf \: 2x + p \:\\

⠀⠀⠀▪︎ ⠀\sf 3^{rd} \:Term\: =\: \bf \: 3x + 6 \:\\

⠀⠀⠀⠀⠀▪︎⠀It is an A.P ( Airthmetic Progression ) . The difference ( d ) between two consecutive term is constant .

Therefore,

\qquad:\implies \sf 2^{nd} \:Term\:- \: 1^{st} \:Term\: = 3^{rd} \:Term\: - \:2^{nd} \:Term\:\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf 2^{nd} \:Term\:- \: 1^{st} \:Term\: = 3^{rd} \:Term\: - \:2^{nd} \:Term\:\\

\qquad:\implies \sf 2x + p\:- \: x\: = 3x + 6\: - \:(2x + p) \:\:\\

\qquad:\implies \sf 2x + p\:- \: x\: = 3x + 6\: - \:2x - p \:\:\\

\qquad:\implies \sf 2x - x+ p\:\: = 3x- 2x + 6\: - p \:\:\\

\qquad:\implies \sf x+ p\:\: = x - p + 6 \:\:\\

\qquad:\implies \sf \cancel {x}\:+ p\:\: =\cancel {x }+ 6\: - p \:\:\\

\qquad:\implies \sf p\:\: =  6\: - p \:\:\\

\qquad:\implies \sf p\:\: =  6\: - p \:\:\\

\qquad:\implies \sf p\:+ p\: =  6\:  \:\:\\

\qquad:\implies \sf 2p\: =  6\:  \:\:\\

\qquad:\implies \sf p\: = \dfrac{ 6}{2}\:  \:\:\\

\qquad:\implies \bf p\: =  3\:  \:\:\\

\qquad :\implies \frak{\underline{\purple{\:p = 3}} }\:\:\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The\:value \:of\:p \:is\:\bf{3\:}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions