6. The value of (tanlº tan2° tan3º ... tan89) is
(C) 2
1
(D)
(B)
0
(A)
2
Answers
Answered by
24
Answer :
1
Solution :
• To find : tan1°×tan2°×tan3°× . . . ×tan89°
• Note : tan(90° - ∅) = cot∅
tan∅×cot∅ = 1
Now ,
Let the given expression be x .
Thus ,
→ x = tan1° × tan2° × tan3° × . . . × tan89°
→ x = tan1° × tan2° × tan3° × . . . × tan45° ×
. . . × tan89°
Now ,
Rearranging with the complementary angles , we get ;
→ x = ( tan1° × tan89° ) × ( tan2° × tan88° ) × ( tan3°×tan87° ) × . . . × tan45°
→ x = ( tan1°×tan(90°-1°) ) × ( tan2°×tan(90°-2°) ) × ( tan3°×tan(90°-3°) ) × . . . × tan45°
→ x = ( tan1°×cot1° ) × ( tan2°×cot2° ) × ( tan3°×cot3° ) × . . . × tan45°
→ x = 1 × 1 × 1 × . . . × 1
→ x = 1
Hence ,
tan1° × tan2° × tan3° × . . . × tan89° = 1
Similar questions