Math, asked by mohdansari8039, 6 months ago

6. Two lines AB and CD intersect at O. If
LAOC = 50°, find LAOD, BOD and BOC​

Answers

Answered by cuteattitudegirl
5

Answer:

hî your answer ☝️☝️☝️☝️☝️

Attachments:
Answered by Anonymous
21

Given:

  • \angle AOC = 50°

Find:

  • \angle AOD, \angle BOD angle \angle BOC

Solution:

\setlength{\unitlength}{1cm} \begin{picture}(6,6) \thickliness\put(2, 2){\line(2,1){5}} \put(9,2){\line( -4,1){7}} \put(9,2.2){\sf {\large {B}}} \put(2,3.8){  \sf{\large{ A}}} \put(1.8,1.8){  \sf{\large{ C}}} \put(7,4.4){  \sf{\large{ D}}} \put(4.5,3.1){  \sf{\large{ O}}}  \put(3.2,3){ $ \sf{\large{{50}^{ \circ} }}$}  \put(4.2,3.12){\circle* {0.2}}\end{picture}

we, know

 : \to \quad \sf  \angle AOC + \angle AOD =  {180}^{ \circ}  \qquad \big \lgroup{ \because Linear \: Pair}\big \rgroup

where,

  • \angle AOC = 50°

So,

\dashrightarrow\sf  \angle AOC +  \angle AOD =  {180}^{ \circ} \\  \\  \\

\dashrightarrow\sf  {50}^{ \circ}  + \angle  AOD =  {180}^{ \circ} \\  \\  \\

\dashrightarrow\sf \angle  AOD =  {180}^{ \circ}  - {50}^{ \circ}  \\  \\  \\

\dashrightarrow\sf \angle  AOD =  {130}^{ \circ} \\  \\  \\

\therefore\sf  \angle AOD =  {130}^{ \circ}

•••••••••||||||||•••••••||||||||••••♪••||||

Now,

 : \to \quad \sf  \angle AOC =  \angle BOD \qquad \big \lgroup{ \because Vertical \: Opposite \: Angle  }\big \rgroup

where,

  • \angle AOC = 50°

So,

\dashrightarrow \sf  \angle AOC =  \angle BOD \\  \\  \\

\dashrightarrow \sf   {50}^{ \circ} =  \angle BOD \\  \\  \\

\dashrightarrow \sf \angle BOD =  {50}^{ \circ}  \\  \\  \\

\therefore \sf \angle BOD =  {50}^{ \circ}

•••••••|||||••••••••||||||••••♪••|♪♪♪•••

we, know

 : \to \quad \sf  \angle BOC + \angle BOD =  {180}^{ \circ}  \qquad \big \lgroup{ \because Linear \: Pair}\big \rgroup

where,

  • \angle BOD = 50°

So,

 \dashrightarrow \sf  \angle BOC + \angle BOD =  {180}^{ \circ} \\  \\  \\

 \dashrightarrow \sf  \angle BOC +  {50}^{ \circ}  =  {180}^{ \circ} \\  \\  \\

 \dashrightarrow \sf  \angle BOC  =  {180}^{ \circ}  -  {50}^{ \circ} \\  \\  \\

 \dashrightarrow \sf  \angle BOC  =  {130}^{ \circ}\\  \\  \\

 \therefore \sf  \angle BOC  =  {130}^{ \circ}

_______________________________

Hence,

  • \angle AOD = 130°
  • \angle BOD = 50°
  • \angle BOC = 130°
Similar questions