Math, asked by punesairaj504, 4 months ago

6. Using the identity (a - b)2 = (a2 - 2ab + b2), evaluate the following.
699^{2}

293 ^{2}
191 {}^{2}

Answers

Answered by Vansh1486
5

Answer:

1. 488601

2. 85849

3. 36481

Step-by-step explanation:

1.

 {699}^{2}

by \: using \: identity \:  \: = (a  -  b)^{2}  =  {a}^{2}   - 2ab +  {b}^{2}

 = (700 - 1)^{2}

 =  {700}^{2}  - 2(700)(1) +  {1}^{2}

 = 490000 - 1400 + 1

 = 488601

2.

293^{2}

 = (300 - 7)^{2}

 =  {300}^{2}  - 2(300)(7) +  {7}^{2}

 = 90000 - 4200 + 49

 = 85849

3.

 {191}^{2}

 = (200 - 9 )^{2}

 =200^{2}   - 2(200)(9) + 9^{2}

 = 40000 - 3600 + 81

 = 36481

Hope I helped You :)

Answered by jeetavirk9313031993
0

Answer:

293

by using identity

Step-by-step explanation:

  • (a-b) square 2 = ( a square 2- 2ab +b square 2)

we know that when we subtract 7 from 300 answer will be the 293.

so, we write

(300 -7) = 293

(a-b) = ( a square 2- 2ab +b square 2)

( 300-7). = ( 300 square 2 - 2 ×300×7 +7 square 2)

293. = ( 90000 - 4200 +49 )( because 300×2-3×300 =600 ×7 = 4200 + 7×7 = 49)

90000-4200 +49

= 85849

Similar questions