Math, asked by nikita07rg, 1 month ago

6) Verify the property a×(b+c)=a×b+a×c by taking
a=-13/4 , b=5/2 , c= -7/6​

Answers

Answered by rinagurung90086
0

Answer:

a =13/4. , b) =5/2. , c=7/6.

Answered by TwilightShine
25

What to do?

  • Verify the property a × (b + c) = a × b + a × c by taking a = -13/4, b = 5/2 and c = -7/6.

Solution :-

  • This is distributive property. We have to show that :-

 \sf \dfrac{ - 13}{ \:  \:  \:  \: 4}  \times   \left(\dfrac{5}{2}  +  \dfrac{ - 7}{ \:  \:  \: 6}  \right) =  \dfrac{ - 13}{ \:  \:  \:  \: 4}  \times  \dfrac{5}{2}  +  \dfrac{ - 13}{ \:  \:  \:  \: 4}  \times  \dfrac{ - 7}{ \:  \:  \: 6}

-----------------------------------------------------------

LHS

 :\longmapsto\tt \dfrac{ - 13}{ \:  \:  \:  \:  4}  \times  \left( \dfrac{5}{2}  +  \dfrac{ - 7}{ \:  \:   \: 6}  \right)

 :\longmapsto\tt \dfrac{ - 13}{ \:  \:  \:  \: 4}  \times   \left(\dfrac{(5 \times 3) + ( - 7 \times 1)}{6}  \right)

 :\longmapsto \tt\dfrac{ - 13}{ \:  \:  \:  \: 4}  \times   \left(\dfrac{15  - 7}{6}  \right)

 :\longmapsto\tt\dfrac{ - 13}{ \:  \:  \:  \: 4}  \times  \dfrac{8}{6}

Cancelling the numbers,

 :\longmapsto\tt \dfrac{ - 13}{ \:  \:  \:  \:  \: 1}  \times  \dfrac{1}{3}

  :\longmapsto\tt\dfrac{ - 13}{ \:  \:  \:  \: 3}

RHS

 :\longmapsto\tt \dfrac{ - 13}{ \:  \:  \:  \: 4}  \times  \dfrac{5}{2}  +  \dfrac{ - 13}{ \:  \:  \:   \: 4}  \times  \dfrac{ - 7}{ \:  \:  6}

 :\longmapsto \tt\dfrac{ - 65}{ \:  \:  \:  \:  \: 8}  +  \dfrac{91}{24}

 :\longmapsto\tt \dfrac{ (- 65 \times 3) + (91 \times 1)}{24}

  :\longmapsto\tt\dfrac{ - 195 +91 }{24}

 :\longmapsto \tt\dfrac{ - 104}{ \:  \:  \:  \:  \: 24}

Cancelling the numbers,

:\longmapsto  \tt\dfrac{ - 13}{ \:  \:  \:   \: 3}

 \\

LHS = RHS.

Hence verified!

________________________________

Note :- Kindly swipe right to view the answer properly.

Similar questions