Math, asked by rozakhanr, 1 year ago

6 x square - 11 x + 5.0 sum and product​

Answers

Answered by Anonymous
3

Answer:

sum =  \frac{11}{6}  \\  \\ product =  \frac{5}{6}

Step-by-step explanation:

6 {x}^{2}  - 11x + 5 = 0 \\  \\ \therefore 6 {x}^{2}  - 6x - 5x + 5 = 0 \\  \\  \therefore \: 6x(x - 1) - 5(x - 1) = 0 \\  \\  \therefore \: (6x - 5)(x - 1) = 0

Take (6x-5)=0

6x - 5 = 0 \\  \\  \therefore \: 6x  = 5 \\  \\  \therefore \: x =  \frac{5}{6}

Take (x-1)=0

x - 1 = 0 \\  \\  \therefore \: x = 1

Two Zeros Of Equation Is Given Below

x =  \frac{5}{6}  \\  \\ x = 1

Sum Of Zeros

 =  >  \frac{5}{6}  + 1 \\  \\  =  >  \frac{5}{6}  +  \frac{6}{6}  \\  \\  =  >  \frac{11}{6}

Product Of Zeros

 =  > 1 \times  \frac{5}{6}  \\  \\  =  >  \frac{5}{6}

Answered by BrainlyConqueror0901
97

Answer:

\huge{\boxed{\sf{ \alpha  +  \beta  =  \frac{11}{6}  (sum \: of \: roots) }}}

\huge{\boxed{\sf{ \alpha  \beta  =  \frac{5}{6} (products \: of \: roots)</p><p> }}}

Step-by-step explanation:

\huge{\boxed{\sf{SOLUTION-}}}

\huge{\boxed{\sf{METHOD(1)}}}

6 {x}^{2}  - 11x + 5 = 0 \\a = 6 \:  \: b =  - 11 \:  \:a nd \:c = 5 \\ \:  we \: have \: to \: find \: sum  \\  and \: products \: of \: roots \\ let \: sum \: of \: roots \: be \:  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \alpha  +  \beta  =  \frac{ - ( - 11)}{6} \\  \alpha  +  \beta  =  \frac{11}{6}  (sum \: of \: roots) \\ products \: of \: roots \: be \:  \alpha \times   \beta  =  \frac{c}{a}  \\  \alpha  \times  \beta  =  \frac{5}{6}  \\  \alpha  \beta  =  \frac{5}{6} (products \: of \: roots)

\huge{\boxed{\sf{METHOD(2)}}}

6x^{2}-11x+5=0\\6x^{2}-6x-5x+5=0\\6x(x-1)-5(x-1)=0\\(6x-5)(x-1)=0\\x=\frac{5}{6}\:AND\:1\\sum\:of\:roots=1+\frac{5}{6}\\=)\frac{6+5}{6}\\=)\frac{11}{6}\\product\:of\:roots=1\times\frac{5}{6}\\=)\frac{5}{6}

\huge{\boxed{\sf{ \alpha  +  \beta  =  \frac{11}{6}  (sum \: of \: roots) }}}

\huge{\boxed{\sf{ \alpha  \beta  =  \frac{5}{6} (products \: of \: roots)</p><p> }}}

Similar questions