Math, asked by yuktalyrical, 1 month ago

6. यदि P और एक द्विघात बहुपद ax2 + bx + c के शून्यक हैं, तो Px Q का मान ज्ञात कीजिए। (आ अ भ (स (द) - b - ( a a a​

Answers

Answered by itzcutekudi21
8

Early cities developed in a number of regions, from Mesopotamia to Asia to the Americas. The very first cities were founded in Mesopotamia after the Neolithic Revolution, around 7500 BCE. Mesopotamian cities included Eridu, Uruk, and Ur.

Answered by Swarup1998
2

Given data:

P और Q द्विघात बहुपद ax^{2}+bx+c के शून्यक हैं

To find:

P\times Q का मान

Step-by-step explanation:

मान लें, f(x)=ax^{2}+bx+c

चूँकि P और Q, f(x) के शून्यक हैं,

\quad f(P)=0\Rightarrow aP^{2}+bP+c=0 ... ... (i)

\quad f(Q)=0\Rightarrow aQ^{2}+bQ+c=0 ... ... (ii)

(i) और (ii) से घटाने पर, हम प्राप्त करते हैं

\quad a(P^{2}-Q^{2})+b(P-Q)=0

\Rightarrow P+Q=-\dfrac{b}{a}

पुनः, (i) और (ii) से जोड़ने पर, हमें प्राप्त होता है

\quad a(P^{2}+Q^{2})+b(P+Q)+2c=0

\Rightarrow a\{(P+Q)^{2}-2PQ\}+b(P+Q)+2c=0

\Rightarrow a\{(-\dfrac{b}{a})^{2}-2PQ\}+b(-\dfrac{b}{a})+2c=0

  • since P+Q=-\dfrac{b}{a}

\Rightarrow a\{\dfrac{b^{2}}{a^{2}}-2PQ\}-\dfrac{b^{2}}{a}+2c=0

\Rightarrow \dfrac{b^{2}}{a}-2aPQ-\dfrac{b^{2}}{a}+2c=0

\Rightarrow -2aPQ+2c=0

\Rightarrow PQ=\dfrac{c}{a}

Final answer: PQ=\dfrac{c}{a}

Similar questions