Math, asked by satyajitbordoloi, 2 months ago

60. The Particular integral of the differential equation( D2+D+1)y=ex is equual to
(A) 1/3 ex
(В) Зех
(C) ex
(D) none of these​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\textsf{Differential equation is}

\mathsf{(D^2+D+1)y=e^x}

\textbf{To find:}

\textsf{Particular integral of the given differntial equation}

\textbf{Solution:}

\underline{\textsf{Particular integral}}

\mathsf{=\dfrac{e^x}{D^2+D+1}}

\boxed{\mathsf{Paricular\;integral\;of\;\dfrac{e^{ax}}{f(D)}\;is\;\dfrac{e^{ax}}{f(a)}\;provided\;f(a)\neq\,0}}

\mathsf{=\dfrac{e^x}{1^2+1+1}}

\mathsf{=\dfrac{e^x}{1+1+1}}

\mathsf{=\dfrac{e^x}{3}}

\implies\boxed{\mathsf{Particular\;integral=\dfrac{e^x}{3}}}

\textbf{Answer:}

\mathsf{Option\;(A)\;is\;correct}

\textbf{Find more:}

Find the Particular Integral of y" + 2y' + 3y = Sin x is

https://brainly.in/question/33821291

Similar questions