Math, asked by SlickSitution33, 5 months ago

600 + 7 + 3/100 + 6/100 in decimal​

Answers

Answered by vatsalpal13jun2009
0

Answer:

the answer is 6.16

Answered by Yuseong
6

Required Answer:

Here we have to write the sum of the given numbers in decimal form,

 \sf {  600 + 7 + \dfrac{3}{100} + \dfrac{6}{100} }

  • Step 1 : Taking L.C.M and making the denominator same.

\sf { \longrightarrow  \dfrac{60000 + 700 + 3 + 6}{100} }

  • Step 2 : Performing addition.

\sf { \longrightarrow  \dfrac{60700  + 9}{100} }

  • Step 3 : Performing addition.

\sf { \longrightarrow  \dfrac{60709}{100} }

  • Step 4 : Now, if we have to write it in decimal form then we have to see how many zeros are in denominator. Here, there are two zeros "00' . Thus, we'll substitute a decimal in the numerator before 2 digits from the right side.

\sf \red{ \longrightarrow  607.09 }

Extra Information:

\tiny\boxed{\begin{array}{cc}\bf{\dag}\:\:\underline{\textsf{Fraction Rules :}}\\\\\bigstar\:\:\sf\dfrac{A}{C} + \dfrac{B}{C} = \dfrac{A+B}{C} \\\\\bigstar\:\:\sf{\dfrac{A}{C} - \dfrac{B}{C} = \dfrac{A-B}{C}}\\\\\bigstar\:\:\sf\dfrac{A}{B} \times \dfrac{C}{D} = \dfrac{AC}{BD}\\\\\bigstar\:\:\sf\dfrac{A}{B} + \dfrac{C}{D} = \dfrac{AD}{BD} + \dfrac{BC}{BD} = \dfrac{AD+BC}{BD} \\\\\bigstar\:\:\sf\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{AD}{BD} - \dfrac{BC}{BD} = \dfrac{AD-BC}{BD}\\\\\bigstar \:\:\sf \dfrac{A}{B} \div \dfrac{C}{D} = \dfrac{A}{B} \times \dfrac{D}{C} = \dfrac{AD}{BC}\end{array}}

________________________________

Similar questions