Math, asked by lakshminagupta559, 2 months ago

61. What is the area of a semicircle having perimeter 90 cm?
(1) 481.25 cm
(2) 962.5 cm
(3) 1995 cm
(4) 240.63 cm​

Answers

Answered by SavageBlast
3

Given:-

  • Perimeter of Semicircle = 90 cm

To Find:-

  • Area of a semicircle

Formula Used:-

  • {\boxed{\bf{Perimeter\:of\:Semi-Circle=\dfrac{1}{2}\times 2\pi r + 2r}}}

  • {\boxed{\bf{Area\:of\:Semi-Circle=\dfrac{1}{2}\times \pi r^2}}}

Solution:-

Firstly,

\sf :\implies\:Perimeter=\dfrac{1}{2}\times 2\pi r + 2r

\sf :\implies\:90=r(\pi +2)

\sf :\implies\:90=r(\dfrac{22}{7}+2)

\sf :\implies\:90=r\times \dfrac{22+14}{7}

\sf :\implies\:90=r\times \dfrac{36}{7}

\sf :\implies\:r= \dfrac{90\times7}{36}

\sf :\implies\:r= \dfrac{10\times7}{4}

\sf :\implies\:r= \dfrac{35}{2}\:cm

Now,

\sf :\implies\:Area\:of\:Semi-Circle=\dfrac{1}{2}\times \pi r^2

\sf :\implies\:Area=\dfrac{1}{2}\times \dfrac{22}{7}\times \dfrac{35}{2}\times \dfrac{35}{2}

\sf :\implies\:Area=11\times \dfrac{5}{2}\times \dfrac{35}{2}

\sf :\implies\:Area=\dfrac{11\times5\times35}{4}

\sf :\implies\:Area=\dfrac{1,925}{4}\:cm^2

\sf :\implies\:Area=481.25\:cm^2

Hence, The Area of Semi Circle is 481.25cm².

{Option 1 is correct}

━━━━━━━━━━━━━━━━━━

Similar questions