Math, asked by rishika5379, 11 months ago

62. In how many years will the principal be double at 9.6 p.c.p.a. simple interest?

(Select two correct alternatives.).
the answer is 125 months and 10 years 5 months but how pls solve my question ​

Answers

Answered by nabarajbaral327
1

Answer:

Factorize: x^2-3+1/x^2

Answered by TRISHNADEVI
7

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:  \: ANSWER \:  \: } \mid}}}}}

 \bold{ \underline{ \:  \: Given  \: : \mapsto}} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \text{Rate \:   of  \: interest = 9.6\% } \\  \\ </p><p>\text{Let, } \\  \:  \:  \:  \:  \:  \bold{ The  \:  \: Principal  \:  \: amount = P} \\  \\  \bold{ \therefore \: The \:  \:  total \:  \: amount  \:  \: with \:  \:  interest = 2P} \\  \\  \bold{ \therefore \: The  \:  \: amount  \:  \: of\:  \:  interest = 2P - P = P} \\  \:  \:  \:  \:  \:  \:  \: \text{i.e.  S.I.  =P} \\  \\  \\ \text{Suppose,} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{The \:  \:  no.  \:  \: of  \:  \: years = n} \\  \\

  \underline{ \mathsf{We \:  \:  know \:  \:  that,}} \\  \\ \:  \:  \:  \:   \bold{S.I. =  \frac{ \: Prn \: }{100} } \\  \\  \bold{  \Rightarrow \: P=  \frac{P \times 9.6 \times n}{100}  } \\  \\  \bold{  \Rightarrow \:100  \times P = P \times 9.6 \times n}  \\  \\ \bold{  \Rightarrow \: \frac{100 \times \:  \cancel{ P}}{ \cancel{P}} = 9.6 \times n  } \\  \\  \bold{  \Rightarrow \:100 = 9.6 \times n } \\  \\  \bold{  \Rightarrow \: n =  \frac{100}{9.6} }  \\  \\ \bold{  \Rightarrow \:n = 10.41 } \\  \\  \bold{ \:  \therefore \:  \: n = 10 \: (approx)}

\bold{The \:  \:  no.  \:  \: of  \:  \: years   = 10 \:  \: years \: (approx)} \\  \\

Similar questions