Math, asked by kishanoberoy729, 11 months ago

62500 for 2 year 6months at 12 percent per annum compounded annually

Answers

Answered by BrainlyConqueror0901
25

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Compound\:Interest=20,437.5\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Principal(p)=  62,500\:rupees\\  \\  \tt:  \implies Rate\% = 12\% \\  \\  \tt:  \implies Time(t) = 2 \: year \: 6 \: months \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Compound \: Interest = ?

• According to given question :

 \tt \circ \: Time = \frac{30}{12} \: years   \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies A= p(1 +  \frac{r}{100} )^{t}  \\  \\  \tt:  \implies A =62500 \times (1 +  \frac{12}{100} )^{ \frac{30}{12} }  \\  \\  \tt:  \implies A = 62500\times  (1 + 0.12)^{ \frac{29}{12} }  \\  \\  \tt:  \implies A= 62500 \times (1.12)^{  \frac{30}{12}  }  \\  \\  \tt:  \implies A=62500 \times 1.327 \\  \\   \green{\tt:  \implies A =  82,937.5\:rupees } \\  \\  \bold{For \: Compound \: Interest : } \\  \tt:  \implies C.I = A - p \\  \\ \tt:  \implies C.I=82937.5 - 62500 \\  \\  \green{\tt:  \implies C.I =20,437.5\:rupees}

Answered by AdorableMe
53

Given:-

  • Principal (P) = ₹ 62500
  • Time (n) = 2 years 6 months
  • Rate (r) = 12 %

To find:-

Compound interest.

Solution:-

Total time = 24 months + 6 months

                = 30 months

                = 30/12 years

We know,

\bold{A=P(1+\frac{r}{100})^n }

\bold{A=62500(1+\frac{12}{100})^\frac{30}{12}  }\\\\\bold{A=62500(1+0.12)^\frac{30}{12} }\\\\\bold{A=62500*1.12^\frac{30}{12} }\\\\\bold{A=62500*1.327}\\\\\bold{A=82937.5 }

A = ₹ 82937.5

Compound interest:

C.I. = A - P

⇒C.I. = 82937.5 - 62500

⇒C.I. = ₹ 20437.5

Similar questions