Math, asked by prakasam4600, 17 hours ago

63. Find the directional derivative ofP = 4e^2x-y+zat the point (1,1,-1) in aadirection towand the point (-3,5,6)​

Answers

Answered by dcmallik1396
9

Step-by-step explanation:

p = 4 {e}^{2x}  - y + z \:  \\ grad \: p  =(i  \frac{\delta}{ \delta \: x} + j \frac{\delta }{ \delta \: y } + k \frac{\delta}{\delta z} \:)(4 {e}^{2x}  - y + z) \\  = 4 {e}^{2x} .2 i- j + k \\  = 8 {e}^{2x} i - j + k \\ at \: (1  \ \:  \: 1  \: - 1) \\ gradp =( 8 {e}^{2} i - j + k)

direction = a \: vector =  - 3i + 5j + 6k

directional \: derivative = gradp. \frac{a \: vector}{ |a| }  = (8 {e}^{2}i - j + k)  \frac{( - 3i + 5j + 6k)}{( \sqrt{ { (- 3)}^{2}  +  {5}^{2} +  {6}^{2}  } )}  \\  =   \frac{ - 24 {e}^{2}  - 5 + 6}{9 + 25 + 36}  =  \frac{ - 24 {e}^{2} + 1 }{60}

Answered by sulabdas77
0

Answer:

Step-by-step explanation:

Similar questions