Math, asked by chirlahemanth8, 7 months ago

63. The equation of the chord of
x² + y2 - 4x +6y +3 = 0 whose mid point is 7
(1,-2) is
1) x+y+1=0
2) 2x+3y+4=0
3) x-y-3=0
4) not existing​

Answers

Answered by amansharma264
8

CORRECT QUESTION.

The equation of chord x² + y² - 4x + 6y + 3 = 0

whose mid point is ( 1,-2) is.

EXPLANATION.

 \sf  :  \implies \: equation \: of \:  \: chord \\  \\ \sf  :  \implies \:  {x}^{2}  +  {y}^{2} - 4x + 6y + 3 = 0 \\  \\  \sf  :  \implies \: centre \: of \: circle \:  = ( - g ,  - f)  = (2 ,  - 3) \\  \\  \sf : \implies \: radius \:  =  \sqrt{ {g}^{2}  +  {f}^{2} - c }  \\  \\  \sf :   \implies \: r =  \sqrt{ {(2)}^{2}  + ( - 3) {}^{2} - 3 } \\  \\  \sf :  \implies \: r \:  =  \sqrt{4 + 9 - 3}   =  \sqrt{10}

 \sf :  \implies \: we \: can \: find \: slope \: of \: the \: equation \\  \\  \sf : \implies \:  \frac{ y_{2} -  y_{1}  }{ x_{2} -  x_{1}} =  \frac{ - 3 + 2}{2 - 1}  =  - 1 \\  \\  \sf : \implies \:  m_{1} m_{2} =  - 1 \\  \\  \sf : \implies \: m _{1} ( - 1) =  - 1 \\  \\  \sf :  \implies \:  m = 1

 \sf :  \implies \: we \: can \: find \: equation \: of \: chord \\  \\  \sf :  \implies \: (y -  y_{1}) = m(x -  x_{1}) \\  \\  \sf :   \implies \: (y   + 2) = 1(x - 1) \\  \\  \sf :  \implies \: y  +  2 = x - 1 \\  \\  \sf  :  \implies \:  \: x - y - 3 = 0

Attachments:
Similar questions