Math, asked by sufiaakhlaq073, 14 hours ago

63. The volume of two spheres are in the ratio of 27:8. If
the sum of their radii is 5 units find the difference of
their surface areas
(a) 257 sq. units
20. sq. units
(b) 125 sq. units
(d) 100 sq. units​

Answers

Answered by suhail2070
0

Answer:

20 π

Step-by-step explanation:

 \frac{v1}{v2}  =  \frac{27}{8}  \\  \\  \frac{\frac{4}{3} \pi {x}^{3} }{\frac{4}{3} \pi {y}^{3} }  =  \frac{27}{8}  \\  \\  \frac{ {x}^{3} }{ {y}^{3} }  =  \frac{27}{8}  \\  \\  \frac{x}{y}  =  \frac{3}{2}  \\  \\ x =  \frac{3y}{2}  \\  \\  \\  \\ x + y = 5 \\  \\  \frac{3y}{2}  + y = 5 \\  \\  \frac{5y}{2}  = 5 \\  \\ y = 2 \\  \\ x =  \frac{3}{2}  \times 2 = 3 \\  \\  s1 - s2 = 4\pi( {x}^{2}  -  {y}^{2} ) \\  \\  = 4\pi(9 - 4) \\  \\  = 20\pi.

Similar questions