Physics, asked by cocococo111, 8 months ago

64^-1/2

.................

Answers

Answered by tennetiraj86
35

Answer:

given \: that  \\  \:  {(64)}^{  \frac{ - 1}{2}}  \\  \:  =  > ( {2}^{6) \frac{ - 1}{2} }  \\  \: ( {a}^{m})^{n}  =  {a}^{mn}  \:  \\  =  >   {2}^{6 \times  \frac{ - 1}{2} }  \\  \:  =  >  {2}^{ - 3}  \\  \: we \: know \: that \:  {a}^{ - n}  =  \frac{1}{ {a}^{n} }  \\  \:  {2}^{ - 3 =  \frac{1}{ {2}^{3} } }  =  >  \frac{1}{8}

Answered by mehakShrgll
1

Answer:

\begin{gathered}given \: that \\ \: {(64)}^{ \frac{ - 1}{2}} \\ \: = > ( {2}^{6) \frac{ - 1}{2} } \\ \: ( {a}^{m})^{n} = {a}^{mn} \: \\ = > {2}^{6 \times \frac{ - 1}{2} } \\ \: = > {2}^{ - 3} \\ \: we \: know \: that \: {a}^{ - n} = \frac{1}{ {a}^{n} } \\ \: {2}^{ - 3 = \frac{1}{ {2}^{3} } } = > \frac{1}{8} \end{gathered}

giventhat

(64)

2

−1

=>(2

6)

2

−1

(a

m

)

n

=a

mn

=>2

2

−1

=>2

−3

weknowthata

−n

=

a

n

1

2

−3=

2

3

1

=>

8

1

Similar questions