64^-1/2
.................
Answers
Answered by
35
Answer:
Answered by
1
Answer:
\begin{gathered}given \: that \\ \: {(64)}^{ \frac{ - 1}{2}} \\ \: = > ( {2}^{6) \frac{ - 1}{2} } \\ \: ( {a}^{m})^{n} = {a}^{mn} \: \\ = > {2}^{6 \times \frac{ - 1}{2} } \\ \: = > {2}^{ - 3} \\ \: we \: know \: that \: {a}^{ - n} = \frac{1}{ {a}^{n} } \\ \: {2}^{ - 3 = \frac{1}{ {2}^{3} } } = > \frac{1}{8} \end{gathered}
giventhat
(64)
2
−1
=>(2
6)
2
−1
(a
m
)
n
=a
mn
=>2
6×
2
−1
=>2
−3
weknowthata
−n
=
a
n
1
2
−3=
2
3
1
=>
8
1
Similar questions